TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Equações Diferenciais

Trabalho Universitário: Equações Diferenciais. Pesquise 860.000+ trabalhos acadêmicos

Por:   •  9/9/2014  •  1.413 Palavras (6 Páginas)  •  450 Visualizações

Página 1 de 6

CURSO DE ENGENHARIA MECÂNICA

ATPS

EQUAÇÕES DIFERENCIAIS E SÉRIES

Período: 4º

Turno: Noite

Belo Horizonte-MG

2013

ETAPA 1

Passo 1

Equações Diferenciais

Definição

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida (a incógnita da equação).

Equações diferenciais são ferramentas matemáticas usadas para calcular a evolução de sistemas. O objetivo da modelagem é encontrar a taxa de variação com o tempo das grandezas que caracterizam o problema, ou seja, a dinâmica temporal do sistema de interesse. Resolvendo a equação diferencial (ou sistema de equações diferenciais) que caracteriza determinado processo ou sistema, pode-se extrair informações relevantes sobre os mesmos e, possivelmente, prever o seu comportamento. Equações Diferenciais são aquelas que relacionam uma determinada função com suas derivadas. E é encontrando a função que satisfaz a equação.

A modelagem de um sistema em um conjunto de equações diferenciais fornece, quase sempre, uma descrição aproximada e simplificada do processo real. Ainda assim, a modelagem através de equações diferenciais fornece uma ferramenta poderosa para acessarmos o comportamento geral de vários tipos de sistemas.

Historicamente, a evolução do ramo da matemática no qual se insere o estudo das equações diferenciais aconteceu em paralelo com o desenvolvimento da Física, funcionando como ferramenta de cálculo das equações de movimento da mecânica newtoniana, das equações de onda da física ondulatória e do eletromagnetismo e, mais tarde, na formulação da mecânica quântica e da relatividade.

Classificação

As equações diferenciais são classificadas de acordo o número de variáveis da função na qual é escrita.

Aspectos Técnicos quanto ao uso de equações diferenciais na modelagem de sistemas

O principal desafio que se apresenta na modelagem de sistemas em termos de equações diferenciais é formular as equações que descrevem o problema a partir de um conjunto restrito de informações, ou “pistas”, sobre o comportamento geral do sistema. A construção do modelo envolve uma percepção da situação real em linguagem matemática. Para que o modelo seja uma boa representação da realidade, é de fundamental importância enunciar de maneira precisa os princípios que governam o sistema de interesse.

Ora, como cada sistema possui um conjunto de variáveis e interações características, os modelos propostos aparecem nas mais diversas formas, não havendo uma lista de regras gerais para a representação de determinado sistema ou processo. Apesar disso, segundo Boyce e DiPrima (2012) [2], existem alguns passos que, frequentemente, fazem parte do processo de modelagem: (I) Identificação das variáveis que caracterizam o sistema, (II Definição das unidades de medida das variáveis, (III) Determinação das leis (teóricas ou empíricas) que regem as relações entre as variáveis e a dinâmica do sistema e (IV) Expressar as leis em termos das variáveis identificadas. Uma vez definido o conjunto de equações diferenciais que descrevem a dinâmica do sistema, é necessário resolver as equações, ou seja, encontrar suas soluções. Algumas equações diferenciais possuem soluções analíticas, isto é, podem ser resolvidas “a mão”. Porém, em muitos casos, a complexidade dos sistemas modelados implica em equações complicadas, impossíveis de resolver analiticamente.

Passo 2 e Passo 3

Diferencial de uma função e técnicas de integração de funções de uma variável

Se y é uma função de x, e n é um inteiro positivo, então uma relação de igualdade (que não se reduz a uma identidade) que envolva x, y, y', y'', ...,y(n) é chamada uma equação diferencial de ordem n.

• EQUAÇÃO DIFERENCIAL ORDINÁRIA (EDO): Envolve derivadas de uma função de uma só variável independente.

• EQUAÇÃO DIFERENCIAL PARCIAL (EDP): Envolve derivadas parciais de uma função de mais de uma variável independente.

• ORDEM: é a ordem da derivada de mais alta ordem da função incógnita que figura na equação.

Exemplos:

y' = 2x tem ordem 1 e grau 1

y"+x2(y')3 - 40y = 0 tem ordem 2 e grau 3

y"'+x2y3 = x.tanx tem ordem 3 e grau 3

RESOLUÇÃO

A solução de uma equação diferencial é uma função que não contém derivadas nem diferenciais e que satisfaz a equação dada, ou seja, a função que, substituída na equação dada, a transforma em uma identidade.

Ex: Equação diferencial ordinária: = 3x2 - 4x + 1

dy = (3x2 - 4x + 1) dx

dy = 3 x2dx - 4 xdx + dx + C

y = x3 - 2x2 + x + C (solução geral)

Uma solução particular pode ser obtida da geral através, por exemplo, da condição y(-1) = 3 (condição inicial)

3 = -1 - 2 - 1 + C C = 7 y = x3 - 2x2 + x + 7 (solução particular)

Observação: Em qualquer dos dois casos, a prova pode ser feita derivando a solução e, com isso, voltando à equação dada.

As soluções se classificam em:

Solução geral - apresenta n constantes independentes entre si (n = ordem da EDO). Essas constantes, de acordo com a conveniência, podem ser escritas C, 2C, C2, lnC,

Solução Particular - Obtida da geral, mediante condições dadas (chamadas condições iniciais ou condições de contorno).

A integração é um processo que demanda certa habilidade e técnica, ele provê um meio indispensável para análises de cálculos diversos, além disso o meio de integrar

...

Baixar como (para membros premium)  txt (9.6 Kb)  
Continuar por mais 5 páginas »
Disponível apenas no TrabalhosGratuitos.com