Trabalho Completo Atpas Fisica 2

Atpas Fisica 2

Imprimir Trabalho!
Cadastre-se - Buscar 155 000+ Trabalhos e Monografias

Categoria: Ciências

Enviado por: mtrv 02 abril 2013

Palavras: 2011 | Páginas: 9

Atps Engenharia-Fisica2º

CAPÍTULO I

Leis de Newton:

1.conceito e força, equilíbrio de pontos materiais e dinâmicas de pontos materiais.

Na Etapa 1 mostramos um próton que voa acelerado pela força elétrica (Fe no interior do LI-IC, numa região do anel em que pode ser aproximado de um tubo retilíneo, onde nessa região o único desvio de trajetória é a força gravitacional (Fg), e equilibrada a cada instante por uma força magnética (Fm) aplicada ao próton.

PASSOS

Passo 1 (Equipe)

Supor um próton que voa no interior do anel do LHC, numa região que o anel pode ser

aproximado por um tubo retilíneo, conforme o esquema da figura 3. Supondo ainda que

nessa região, o único desvio da trajetória se deve à força gravitacional Fg e que esse desvio é corrigido (ou equilibrado) a cada instante por uma força magnética Fm aplicada ao próton.Nessas condições, desenhar no esquema o diagrama das forças que atuam sobre o próton.

Passo 2 (Equipe)

Supondo que seja aplicada uma força elétrica Fe = 1,00 N sobre o feixe de prótons. Sabe-se que em média o feixe possui um número total n = 1x1015 prótons. Se essa força elétrica é responsável por acelerar todos os prótons, qual é a aceleração que cada próton adquire,sabendo-se que sua massa é mp = 1,67x10-24 g.

Atenção: Desprezar a força gravitacional e a força magnética.

FE = 1N

n = 1.10 PROTONS

MP = 1,67. – 10 g = 1,67 . 10 kg

(n) = m . a

1 = 1,67. 10 . 1.10 a

1 = 1,67. 10 a

1 = a

1,67 . 10

0,599 . 10 = a

A = 5,99. 10 m/s

Passo 3

Se ao invés de prótons, fossem acelerados núcleos de chumbo, que possuem uma massa 207 vezes maior que a massa dos prótons. Determinar qual seria a força elétrica Fe necessária,para que os núcleos adquirissem o mesmo valor de aceleração dos prótons.

Mc = 207.1,67.10-24 = 3,4569.10-22

a = 5,99.1023m/s

F = 3,4569.10-22 .5,99.10-23

F = 2,07.10-44 N.

Passo 4

Considerar agora toda a circunferência do acelerador, conforme o esquema da figura 4.Assumindo que a força magnética Fm é a única que atua como força centrípeta e garante que os prótons permaneçam em trajetória circular, determinar qual o valor da velocidade de cada próton em um instante que a força magnética sobre todos os prótons é Fm = 5,00 N.Determinar a que fração da velocidade da luz (c = 3,00 x 108 m/s) corresponde esse valor de

velocidade.

Fc = m. v2/R

FM = 5 N

R = m . a

FCP =m . Acp

FCP = MV/2R

5 = 1,67 . 10 . 10 . V

2.4300

5 . 2 . 4300 = V

1

1,67 . 10

V = 25.748,5 . 10

V = 25748,5 . 10

V = 160,46.10 m/s

Com dimensões gigantescas e temperaturas extremas, operar o LHC é um desafio para físicos e engenheiros. Para que as partículas circulem através do anel obtendo a energia desejada, é necessário que os cálculos teóricos efetuados pelos físicos sejam aplicados na prática às peças, aos sistemas de controle e sistemas de refrigeração desenvolvidos pelos engenheiros.

Além disso, o LHC acelera as partículas do feixe a velocidades extremamente altas, que podem chegar a 99,99% da velocidade da luz. Sob tais velocidades, o sistema LHC deve ser estudado sob o ponto de vista relativístico (Teoria da Relatividade, proposta por Einstein em 1905). Porém, para cumprir nosso objetivo didático, vamos assumir que os cálculos podem ser realizados usando a mecânica clássica (Leis de Newton, desenvolvidas em 1687), que é uma boa aproximação até certo limite de velocidades do feixe de partículas.

ETAPA 2

Passo 1 (Equipe)

Sabe-se que no interior do tubo acelerador é feito vácuo, ou seja, retira-se quase todo o ar existente no tubo. Isso é feito para impedir que as partículas do feixe se choquem com as partículas. Supor um cientista que se esqueceu de fazer vácuo no tubo acelerador. Ele observa que os prótons acelerados a partir do repouso demoraram 20 μs para atravessar uma distância de 1cm.Determinar qual é a força de atrito FA total que o ar que o cientista deixou no tubo aplica sobre os prótons do feixe, sabendo que a força elétrica Fe (sobre todos os 1×1015 prótons)contínua.

T = 20 ns= 20 . 10 s

S = 10 m

S = So + VT + aT/2

10 = 0 + 0T + aT/2 ( 20 . 10 )

20 = a 400 . 10

2/40 . 10 = a

a = 0,05 . 10 = 5.10 m/s

Fe = 1 n

N = 10 p FA 0 FE

Fr = m . a

Fe -FA = 1,67 . 10 . 10 . 5 . 10

1 – FA = 8,35 . 10 = 8,35/100 = 0,0835

1 – 0,0835 = FA

FA = 0,92 n

Passo 2 (Equipe)

Quando percebe o erro, o cientista liga as bombas para fazer vácuo. Com isso ele consegue garantir que a força de atrito FA seja reduzida para um terço do valor inicial. Nesse caso, qual é a força de atrito? Determinar qual é a leitura de aceleração que o cientista vê em seu equipamento de medição.

FA = 0,92/3 = 0,31 n

R = m . a

Fe - Fa = 1,67 . 10 . 10 . a´ 1- 0,31 = 1,67 . 10 . a´

0,69 = 1,67 . 10. a´ = 0,69 . 10 = 0,41. 10 = 4,1. 10 m/s

Passo 3 (Equipe)

Para compensar seu erro, o cientista aumenta o valor da força elétrica Fe aplicada sobre os prótons, garantindo que eles tenham um valor de aceleração igual ao caso sem atrito (passo 2 da ETAPA 2). Sabendo que ele ainda está na condição em que a força de atrito FA vale um terço do atrito inicial, determinar qual é a força elétrica Fe que o cientista precisou aplicar aos prótons do feixe.

R = m.a Fa 2 0 Fe

Fe= 1n

1= F´e - F´a

1= F´e - 0,31

F´e = 1,31 n

Passo 4 (Equipe)

Adotando o valor encontrado no passo 3, determinar qual é a razão entre a força Fe imposta pelo cientista aos prótons do feixe e a força gravitacional Fg, imposta pelo campo gravitacional.

Fe 1,31 = 1,31

Fg 10 . 1,67 . 10 . 9,8 16,37 . 10 = 0,08 . 10 = 8 . 10

R = m.a

Fg = mg = m.9,8

Observe a dimensão do cientista comparada à dimensão do detector, que possui 46m de comprimento, 25m de altura, 25m de largura e um peso de 7000 toneladas. O detector ATLAS é o maior detector volumétrico de partículas já construído.

Fonte:(viveraciencia.wordpress.com)

O maior acelerador do mundo

O Grande Colísor de Hádrons (em inglês: Large Hadron Collider – LHC) no CERN (Organização Européia para Pesquisas Nuclear), é o maior acelerador de partículas e o de maior energia existente do mundo. Ele está situado em Genebra, cortando a fronteira entre a Suíça e a França: dois feixes de prótons colidiram a 7 trilhões de elétrons – volt no grande Colisór de Hádrons conforme anunciado por cientistas após a quebra de recorde de mais energia atingida por uma máquina do tipo.

O acontecimento marca uma nova era de pesquisas para os físicos que a partir do experiência puderam estudar melhor fenômenos e partículas até então hipotéticos.

[ ... O Grande Colisor de Hádrons (em inglês: Large Hadron Collider – LHC) no CERN (Organização Européia para Pesquisas Nuclear). (http://fotos.portalcab.comcab.com Fotos de dentro do LHC))...]

"Hoje não haverá colisão", diz Sérgio Novaes, físico da Unesp (Universidade Estadual Paulista) envolvido com o projeto. "Os feixes apenas girarão em direções opostas, sem colidir uns com os outros", completa, dizendo que as primeiras colisões ainda precisarão de pelo menos 60 dias para acontecer. Aí sim começarão as atividades científicas.

A partícula de Deus

Quando o LHC estiver promovendo colisões para valer, começará uma busca frenética por uma partícula em especial: o bóson de Higgs.

O nome assusta, e o apelido mais ainda -- ele é chamado popularmente como "a partícula de Deus". Mas, por que, afinal, o bóson de Higgs é tão especial?

Existe uma teoria muito querida pelos físicos de partículas, chamada de modelo padrão. Ela é basicamente uma lista de todas as peças -- ou seja, todas as partículas -- usadas na confecção de um universo como o nosso. Ela explica como os prótons e os nêutrons são feitos de quarks, e como os elétrons fazem parte de um grupo de partículas chamado de léptons, em que também se incluem os neutrinos, partículas minúsculas de carga neutra. O modelo padrão também explica como funcionam as partículas portadoras de força (como o glúon, responsável por manter estáveis os núcleos atômicos, ou o fóton, que compõe a radiação eletromagnética, popularmente conhecida como luz).

Mas para todo esse imenso "lego" científico funcionar corretamente, os físicos prevêem a existência de uma partícula que explicaria como todas as outras adquirem sua massa. É onde entra o bóson de Higgs. Infelizmente, até agora os cientistas não encontraram nenhum sinal concreto de sua existência. Por maior que fossem os aceleradores de partículas, o Higgs continuava ocultando sua existência. Agora, com a nova joia da ciência europeia, ele não terá mais onde se esconder.

Com uma potência nunca antes vista num acelerador, o LHC quase com certeza encontrará o bóson de Higgs. Ou coisa que o valha.

"Ninguém duvida que a ideia que está por trás do bóson de Higgs esteja correta", afirma Adriano Natale, físico da Unesp (Universidade Estadual Paulista). "Se o bóson de Higgs, exatamente como foi proposto, não for encontrado, aparecerão outros sinais -- partículas -- que indicarão o novo caminho a ser seguido. Podemos não achar o bóson de Higgs, mas, seja qual for a física que está por trás, algo vai aparecer, e este algo pode até levar a uma nova revolução na física."

Aliás, a física bem que anda precisando de uma "nova revolução".

Fonte de pesquisa

http://g1.globo.com/Noticias/Ciencia/0,,MUL753907-5603,00-MAIOR+ACELERADOR+DE+PARTICULAS+DO+MUNDO+COMECA+A+OPERAR.html

http://www.publico.pt/ciencia/noticia/maior-acelerador-de-particulas-do-mundo-vai-fechar-para-obras-1584330

http://revistapesquisa.fapesp.br/2013/03