Trabalho Completo Atps Matematica

Atps Matematica

Imprimir Trabalho!
Cadastre-se - Buscar 155 000+ Trabalhos e Monografias

Categoria: Outras

Enviado por: giovannaleide 25 setembro 2013

Palavras: 1713 | Páginas: 7

ATPS MATEMATICA APLICADA

PROFESSOR: CARMEM MARTÍNS RÉGIS

TUTOR EAD CIÊNCIAS CONTÁBEIS: IVONETE MELO DE CARVALHO

JACAREÍ

ANO 2013

MATEMATICA

“O aluno aprende significativamente matemática, quando consegue atribuir sentido e significado as ideias matemáticas- mesmo aquelas mais puras (isto e’, abstraídas de uma realidade mais concreta)- e sobre elas, e capaz de pensar, estabelecer relações, justificar, analisar, discutir e criar”.

Dario Fiorentini

Sumario

Introdução -----------------------------------------------------------------------------------04

Função Receita -----------------------------------------------------------------------------05

Função do primeiro Grau------------------------------------------------------------------06

Gráfico1--------------------------------------------------------------------------------------07

Gráfico2--------------------------------------------------------------------------------------08

A Variação Media--------------------------------------------------------------------------09

Função Custo--------------------------------------------------------------------------------10

Formula dos valores de prestações para pagamento-----------------------------------11

Capital de Giro-----------------------------------------------------------------------------12

Conceito de Elasticidade-------------------------------------------------------------------13

Formula de Elasticidade-------------------------------------------------------------------14

Considerações finais------------------------------------------------------------------------15

Referencias Bibliográfica------------------------------------------------------------------16

Introdução

A Construção do Conceito de função e um processo demorado e o nível de compreensão varia de aluno para aluno. Acreditamos que o contato dos alunos com as funções deva iniciar-se pela compreensão do significado e pela percepção da interdependência entre duas grandezas ( quando uma grandeza varia também segundo uma lei). No caso de função afim, essa variação mantem uma proporcionalidade, ou seja, se as grandezas são diretamente proporcionais, a razão entre elas e constante.

A estruturação deste trabalho e apresentar a abordagem tradicional quanto ao ensino de função, a analise de alguns livros didáticos e as dificuldades de aprendizagem identificadas.

Função Receita

Com a ampliação de seu quadro funcional, a escola Reforço Escolar, aproveitou para fazer melhorias na estrutura da instituição, otimizando seus serviços.

Ao elaborar a proposta de reorganização da instituição, o proprietário levantou pontos relevantes como o custo para a capacitação de seus profissionais, bem como o custo para a aquisição de equipamentos de informática.

A análise a ser feita pelo banco, a fim de aprovar os recursos para a implementação do projeto, irá considerar alguns dados importantes, como o lucro atualizado da escola.

Escreva a função Receita para cada turno de aulas (manhã, tarde, noite e final de semana).

R(x)= M * N, (Onde M = valor da mensalidade e N = número de alunos):

R(manhã)= 200 * 180 = 36.000,00

R(tarde)= 200 * 200 = 40.000,00

R(noite)= 150 * 140 = 21.000,00

R(fds)= 130 * 60 = 7.800,00

Calcule o valor médio das mensalidades e escreva outra função Receita para o valor obtido como média.

Valor médio das mensalidades= Mensalidades (manhã + tarde + noite + fds) / 4

Vmm= 200+200+150+1304

Vmm= 6804

Vmm= 170,00

R(total) = V(mm) . TA, (Onde V(mm) = valor médio das mensalidades e N = Total de alunos)

R(t) = 170,00 * 580 = 98.600,00

A Função do Primeiro Grau

A Função de Primeiro Grau, a principal característica da função de primeiro grau é a variação proporcional das variáveis. O gráfico da função de primeiro grau é sempre uma reta, e apresenta a seguinte lei de formação: f(x) = ax + b, sendo a e b números reais e a diferente de zero.

O valor da raiz da função de primeiro grau é o valor em que a reta cruza o eixo x, para isso consideremos o valor de y igual a zero, pois no momento em que a reta intersecta o eixo x, y=0.

Gráfico 1

Gráfico 2

A Variação Media

A variação média é definida em intervalos grandes e a imediata é definida em pequenos acréscimos chamados de diferenciais. A taxa de variação média é obtida pela

divisão de duas grandezas que, na prática, tem unidades de medida, então a taxa de variação média também tem unidade de medida que será dada pela divisão das duas unidades de medida envolvidas.

A variação imediata implica em saber determinado valor em um intervalo menor ou em intervalos que não estão explícitos na variação média.

Para calcular a variação imediata, deve-se calcular várias variações médias em intervalos de tempo muito pequenos, os resultados dessas equações são chamados de limite lateral, e devem ser números iguais. Caso os limites laterais resultem em números diferentes, ou um deles resulte em +∞ ou -∞, dizemos que o limite que dá origem aos limites laterais não existe, ou seja, a taxa de variação imediata ou instantânea não existe.

Cálculos da variação média e instantânea (Função Receita):

Agora, devemos calcular a variação média da função receita do período matutino (em 180 ≤ q ≤ 210 onde q representa a quantidade de alunos matriculados),

R(180) =R$ 200,00* 180= R$ 36.000,00

R(210) =R$ 200,00* 210=R$ 42.000,00

Vm= ΔmΔq= 42000-36000210-180→ Vm= 600030→ Vm=200,00

E a variação instantânea da função receita para o turno da manhã quando a quantidade de alunos for exatamente 201 matriculados (mostre o cálculo).

R'(q) = 200

R(201) = 200.

Função Custo

A função Custo da escola que dependerá de escrever a função Salário dos professores. Utilize variáveis diferentes para representar o número de alunos e o número de grupos de 20 alunos que poderão ser formados.

Os professores têm uma carga horária semanal de trabalho de 2 horas-aula para cada grupo de 20 alunos e o salário bruto para tanto é de R$ 50,00 por hora/aula menos 20% de descontos (FGTS, INSS e outros descontos lícitos). Despesas Operacionais, incluindo impostos e tarifas, giram em torno de R$ 49.800,00 (incluindo custo dos trabalhadores administrativos igualmente importantes para o bom funcionamento da estrutura escolar).

Função Custo:

C (t) = C(f) + C(v), (Onde C(t) = Custo total, C(f) = Custo fixo e C(v) = Custo variável)

Cv

= Ta20. 50 . 2 → 58020.100→29 . 100= 2900

C(t) = 49800 + 2900 = 52.700,00

Função Salário:

S = v . h . d, (Onde v = valor da hora, h = quantidade de horas e d = desconto)

S=50 . 1 . 0,8 = 40,00 h/a

Função Lucro

Obtenha a função lucro e o valor informado pelo gerente no cadastro da escola.

L = R(t) – C(t)

L = 98.600,00 - 52.700,00

L = 45.900,00

Formula dos valores de prestações para pagamento

Obtenha a função que determina o valor das prestações do financiamento do custo dos computadores e elabore tabela e gráfico para: 2, 5, 10, 20 e 24 prestações.

O financiamento de computadores e periféricos para fins educacionais, inclusive para unidades escolares, dentro do Banco ABC tem tarifa diferenciada de 1,0% ao mês e o prazo que pode variar de 2 até 24 parcelas. Sendo que a data do primeiro pagamento acontece trinta dias depois de assinado o contrato de financiamento.

R= P . i . (1+i)n(1+i)n-1 , (Onde: R = valor da prestação, P = valor do empréstimo, i = taxa e n = nº de prestações)

Para 2 parcelas:

R= 54000 . 0,01 . 1+0,0121+0,012-1

R= 54000 . 0,01 . 1,02011,0201-1

R= 550,8540,0201=27.405,67

Para 5 parcelas:

R= 54000 . 0,01 . 1+0,0151+0,015-1

R= 54000 . 0,01 . 1,05101005011,0510100501-1

R= 567,5454270540,0510100501=11.126,14

Para 10 parcelas:

R= 54000 . 0,01 . 1+0,01101+0,0110-1

R= 54000

. 0,01 . 1,1046221254112051,104622125411205-1

R= 596,49594772205070,104622125411205=5.701,43

Para 20 parcelas:

R= 54000 . 0,01 . 1+0,01201+0,0120-1

R= 54000 . 0,01 . 1,2201900399479671,220190039947967-1

R= 596,49594772205070,220190039947967=2.992,42

Para 24 parcelas:

R= 54000 . 0,01 . 1+0,01241+0,0124-1

R= 54000 . 0,01 . 1,2697346485319151,269734648531915-1

R= 685,65671020723410,269734648531915=2.541,96

Capital de Giro

Obtenha a função que determina o valor total para pagamento do capital de giro.

A verba necessária para o treinamento dos professores poderá ser obtida por meio da utilização da modalidade “Capital de Giro”, a uma taxa especial de 0,5% ao mês (já que deve atender a necessidade de capital da empresa), com vencimento em um ano da data da assinatura do contrato.

M=C. (1 + i)n , (Onde: M = valor do montante, C = valor do crédito, i = taxa e n = nº de prestações)

M = 40000 . (1 + 0,005)¹²

M = 40000 . 1,06167781186449

M = 42.467,12

Conceito de Elasticidade

O conceito de elasticidade é usado para medir a reação das pessoas frente a mudanças em variáveis econômicas. Representa o grau de sensibilidade de uma variável dependente. Por exemplo da oferta ou a procura de determinado bem.

Algebricamente, a elasticidade é dada pela variação percentual na variável dependente dividida pela mudança percentual na variável que a determina. É através das Leis da Oferta e da Procura é possível apontar a direção de uma resposta em relação à mudança de preços – demanda cai quando o preço sobe, oferta aumenta quando o preço sobe.

A elasticidade-preço da demanda será E = .assim calculamos a derivada e substituiremos q = 100 - 5p na expressão E:

E=(900 – 3P).

E= (0 – 3) . = -3 .

Obtenha a elasticidade para os preços p = 195 e p = 215 e interprete as respostas

Neste momento vamos substituir p= 195 e p= 215.

p=195 == @ - 1,86

p=215 ==@ - 2,53

Conclusão: Para p= 195, temos a elasticidade E @ -1,86 , o que indica que ,se ocorrer um aumento de 1 % para o preço p=195, a demanda diminuirá 1,86 %,aproximadamente .Já para o preço p=21, a elasticidade é E @ 2,53

,indicando que ,se ocorrer um aumento de 1 % no preço,a demanda cairá 2,53% aproximadamente.

Considerações Finais

Mediante a análise da situação atual apresentada nesta APTS, consideramos que o profissional administrador e contador são responsáveis pelo planejamento de estratégias e pelo gerenciamento do dia-a-dia da empresa pública ou privada. A atuação do Administrador é bastante ampla, sendo necessário em todo tipo de empresas. Ele atua em diversas áreas como comercial, logística, financeira, compras, recursos humanos, marketing, entre outras, pois o Administrador é um profissional de múltiplas competências.

Saber tomar as decisões é a principal função do administrador da empresa, pois não existe decisão perfeita, ele terá que pesar as vantagens e desvantagens de cada alternativa para escolher a melhor, sempre visando o desempenho econômico, lembrando que também existem os resultados não econômicos, como a satisfação dos membros do negócio e dos colaboradores.

Conforme Solange Lima “As empresas não mais precisam de profissionais eminentemente técnicos, e sim, de pessoas voltadas para os processos de interpretação, elaboração e transformação, o profissional de sucesso não é mais aquele especializado em determinado assunto”.

REFERÊNCIAS BIBLIOGRÁFICAS

PLT-199 Matemática Financeira (Cristiano Marchi Gimenez)

Aprendendo Matemática (Jose Ruy Giovanni e Eduardo Parente)

www.matematicafinanceira.com.br

GIMENES, Cristiano Marchi. Matemática financeira com HP12C e Excel: uma abordagem descomplicada 1ª. Edição. São Paulo: Pearson Education, 2008.

Fundação Getúlio Vargas.