Ácidos nucleicos: DNA e RNA
Projeto de pesquisa: Ácidos nucleicos: DNA e RNA. Pesquise 862.000+ trabalhos acadêmicosPor: Kelianeksa • 8/12/2014 • Projeto de pesquisa • 5.135 Palavras (21 Páginas) • 433 Visualizações
Os ácidos nucléicos: DNA e RNA
As diversas expressões dos genes são estudadas pela genética. Embora nossos genes tenham sido herdados de nossos genitores, eles podem sofrer mudanças ao longo de nossa vida. Logo, pode-se concluir que tudo o que é hereditário é genético, mas nem sempre o que é genético é hereditário.
Mas, afinal de contas, o que é um gene? Uma definição mais moderna de gene é: segmento de DNA que transcreve um RNA específico. Obviamente, para compreender de modo mais claro este conceito, são necessárias algumas explicações sobre DNA, RNA e transcrição. Vamos a elas.
1) Estrutura geral do DNA
O DNA (ácido desoxirribonucléico) é uma grande molécula composta de dois filamentos (ou fitas) que são mantidos emparelhados graças a ligações de hidrogênio ocorridas entre bases nitrogenadas vizinhas. Estas ligações são específicas: adenina (A) se liga à timina (T) e citosina se liga à citosina (C). Portanto, se uma das fitas é composta pela sequência ATTCGTCAT, a outra fita, que se mantém emparelhada a esta, apresenta a sequência TAAGCAGTA.
2) Estrutura geral do RNA
O RNA (ácido ribonucléico) apresenta constituição química semelhante ao DNA. Duas diferenças importantes são: o RNA apresenta a base nitrogenada uracila (U) ao invés de timina, e é composto de apenas um filamento.
O RNA é produzido pelo DNA, e este processo é denominado transcrição, onde um dos filamentos do DNA serve de molde a partir do qual será transcrito o RNA. Se o filamento-molde de DNA tem a sequência de bases ATTCGTCAT, o RNA transcrito terá a sequência UAAGCAGUA.
A síntese de proteínas
Conforme já mencionado, a transcrição é processo de produção de RNA a partir de uma fita-molde de DNA. Há três tipos diferentes de RNA: RNA-mensangeiro (RNA-m), RNA-ribossômico (RNA-r) e RNA-transportador (RNA-t). Estas moléculas de RNA trabalham em conjunto para a fabricação de uma proteína específica, fenômeno conhecido como tradução. Durante a tradução, os aminoácidos transportados pelo RNA-t serão interligados no interior do ribossomo, uma organela celular. A interligação em cadeia de várias moléculas de aminoácidos resultará na proteína final.
Há vinte tipos diferentes de aminoácidos que entram na composição de proteínas. As proteínas diferem entre si pela quantidade, tipos e sequência de aminoácidos. O que define essas características protéicas é a composição de bases nitrogenadas do RNA-m. A equivalência entre a composição de bases nitrogenadas do RNA-m e os aminoácidos que irão formar a proteína final recebe o nome de código genético. A tabela fornecida abaixo ilustra algumas destas correlações existentes no código genético:
Sequência de bases no RNA-m Aminoácido incorporado na proteína
UUU Fenilalanina (sigla = FEN)
AUG Metionina (sigla = MET)
AAG Lisina (sigla = LIS)
Portanto, se a sequência de bases nitrogenadas do RNA-m for AUGAUGUUU, a sequência equivalente de aminoácidos na proteína produzida será MET-MET-FEN.
Existem milhares de proteínas diferentes no corpo humano. Podemos citar, como exemplo, os anticorpos (proteínas de defesa), a hemoglobina (proteína que transporta oxigênio no sangue) e a pepsina (enzima digestória estomacal). Cada uma delas é produzida seguindo essa regra básica da tradução.
É importante lembrar que a informação para produzir cada proteína corresponde a uma sequência de bases do RNA-m, e que essa sequência de bases do RNA-m foi produzida tendo como molde um filamento específico de DNA. Logo, pode-se afirmar que a molécula de DNA contém as informações necessárias para a produção de todas as proteínas que constituem o organismo. A este conjunto de informações, damos o nome de genoma.
I - Cromossomos, locos, alelos e genótipos
O DNA fica armazenado no núcleo das células em uma estrutura denominada cromossomo. Há apenas um DNA por cromossomo. Nas células humanas existem, ao todo, 46 cromossomos, com exceção dos óvulos e espermatozóides, que possuem apenas 23 cromossomos.
Durante a fecundação, ocorre a junção dos 23 cromossomos do óvulo com os 23 do espermatozóide, originando o zigoto, que é a primeira célula de um novo indivíduo. O zigoto, portanto, terá 23 pares de cromossomos, e, durante o desenvolvimento, irá originar todas as células que constituem o organismo (células somáticas).
Estima-se que existam cerca de 35 mil genes distribuídos nos cromossomos humanos. A posição cromossômica exata onde se situa cada um desses genes é denominada loco gênico. Sendo assim, cada loco gênico é caracterizado por uma sequência de bases nitrogenadas.
Em diferentes pessoas, a sequência de bases nitrogenadas de certo loco pode conter pequenas variações em sua composição, originadas pormutação gênica. Atribui-se o nome de alelos a essas sequências de bases nitrogenadas ligeiramente diferentes umas das outras. Os geneticistas costumam identificar essas variações gênicas por letras. Por exemplo, se identificarmos o alelo não mutante pela letra maiúsculaA, podemos identificar o alelo mutante pela letra minúscula a.
Uma pessoa pode herdar um cromossomo paterno contendo o alelo A e um cromossomo materno contendo o alelo a. Neste caso, diríamos que a combinação de alelos, ou seu genótipo, seria Aa. embora pudesse ser também AA ou aa. O genótipo composto por dois alelos idênticos é denominado homozigoto, ao passo que o genótipo composto por alelos diferentes entre si é heterozigoto.
II - Fenótipos, relações de dominância e heredogramas
Um bom exemplo de como um loco e seus alelos determinam a expressão de uma característica humana é o Rh sanguíneo. Essa característica é definida pela presença ou ausência de uma proteína nos glóbulos vermelhos, o fator Rh ou antígeno D. A presença dessa proteína determina o Rh positivo, e a ausência, o Rh negativo. Essas formas diferentes de expressão de uma mesma característica são denominadas fenótipos. A definição dessa característica está a cargo dos alelos D e d, do loco D. O alelo D determina a produção desta proteína, enquanto o alelo d está associado à ausência dessa proteína.
De acordo com as informações acima, podemos concluir que o genótipo dd determina o fenótipo Rh negativo, e o genótipo DD determina Rh positivo.
...