TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Aceleração média do corpo

Artigo: Aceleração média do corpo. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  13/9/2014  •  Artigo  •  338 Palavras (2 Páginas)  •  278 Visualizações

Página 1 de 2

A Aceleração Média de um corpo é uma grandeza que reflecte a variação de velocidade do corpo por intervalo de tempo e pode ser calculada através da expressão:

A unidade de Sistema Internacional para a aceleração média é o metro por segundo ao quadrado (m/s2).Em Física, a aceleração (símbolo: a) é a taxa de variação (ou derivada em função do tempo) da velocidade. Ela é uma grandeza vetorial de dimensão comprimento/tempo² ou velocidade/tempo. Em unidades do Sistema Internacional, é quantificada em metro por segundo ao quadrado (m/s²). No CGS, é quantificada em Gal, sendo que um Gal equivale a um centímetro por segundo ao quadrado (cm/s²). Desaceleração é a aceleração que diminui o valor absoluto da velocidade. Para isso, a aceleração precisa ter componente negativa na direção da velocidade. Isto não significa que a aceleração é negativa. Assim a aceleração é a rapidez com a qual a velocidade de um corpo varia. Desta forma o único movimento que não possui aceleração é o MRU - movimento retilíneo uniforme. Acelerar um corpo é variar sua velocidade em um período de tempo. A aceleração instantânea é dada por:1

\mathbf{a} = {d\mathbf{v}\over dt},

em que:

a é o vetor aceleração;

v é o vetor velocidade;

t é o tempo.

A aceleração média é dada por:

\mathbf{\bar{a}} = {\mathbf{v}_f - \mathbf{v}_i \over t_f - t_i} = {\Delta \mathbf{v} \over \Delta t},

em que:

\mathbf{\bar{a}} é a aceleração média;

\mathbf{v}_i é a velocidade inicial;

\mathbf{v}_f é a velocidade final;

\mathbf{t}_i é o tempo inicial;

\mathbf{t}_f é o tempo final.

A aceleração transversal (perpendicular à velocidade) causa mudança na direção. Se esta for constante em intensidade e sua direção permanecer ortogonal à velocidade, temos um movimento circular. Para esta aceleração centrípeta temos1

\mathbf{a} = - \frac{v^2}{r} \frac{\mathbf{r}}{r} = - \omega^2 \mathbf{r}

Um valor de uso comum para a aceleração é g, a aceleração causada pela gravidade da Terra ao nível do mar a 45° de latitude, cerca de 9,81 m/s²

Na mecânica clássica, a aceleração \mathbf{a} está relacionada com a força \mathbf{F} e a massa \mathbf{m} (assumida ser constante) por meio da segunda lei de Newton:

F = m \cdot a

...

Baixar como (para membros premium)  txt (2.3 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com