TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Data Mining

Trabalho Escolar: Data Mining. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  12/11/2014  •  478 Palavras (2 Páginas)  •  546 Visualizações

Página 1 de 2

Prospecção de dados ou mineração de dados (também conhecida pelo termo inglês data mining) é o processo de explorar grandes quantidades de dados à procura de padrões consistentes, como regras de associação ou sequências temporais, para detectar relacionamentos sistemáticos entre variáveis, detectando assim novos subconjuntos de dados.

No campo da administração, a mineração de dados é o uso da tecnologia da informação para descobrir regras, identificar fatores e tendências-chave, descobrir padrões e relacionamentos ocultos em grandes bancos de dados para auxiliar a tomada de decisões sobre estratégia e vantagens competitivas.1 2 3

Esse é um tópico recente em ciência da computação, mas utiliza várias técnicas da estatística, recuperação de informação, inteligência artificial e reconhecimento de padrões.

A mineração de dados é formada por um conjunto de ferramentas e técnicas que através do uso de algoritmos de aprendizagem ou classificação baseados em redes neurais e estatística, são capazes de explorar um conjunto de dados, extraindo ou ajudando a evidenciar padrões nestes dados e auxiliando na descoberta de conhecimento. Esse conhecimento pode ser apresentado por essas ferramentas de diversas formas: agrupamentos, hipóteses, regras, árvores de decisão, grafos, ou dendrogramas.

O ser humano sempre aprendeu observando padrões, formulando hipóteses e testando-as para descobrir regras. A novidade da era do computador é o volume enorme de dados que não pode mais ser examinado à procura de padrões em um prazo razoável. A solução é instrumentalizar o próprio computador para detectar relações que sejam novas e úteis. A mineração de dados (MD) surge para essa finalidade e pode ser aplicada tanto para a pesquisa cientifica como para impulsionar a lucratividade da empresa madura, inovadora e competitiva.

Diariamente as empresas acumulam grande volume de dados em seus aplicativos operacionais. São dados brutos que dizem quem comprou o quê, onde, quando e em que quantidade. É a informação vital para o dia-a-dia da empresa. Se fizermos estatística ao final do dia para repor estoques e detectar tendências de compra, estaremos praticando business intelligence (BI). Se analisarmos os dados com estatística de modo mais refinado, à procura de padrões de vinculações entre as variáveis registradas, então estaremos fazendo mineração de dados. Buscamos com a MD conhecer melhor os clientes, seus padrões de consumo e motivações. A MD resgata em organizações grandes o papel do dono atendendo no balcão e conhecendo sua clientela. Através da MD, esses dados agora podem agregar valor às decisões da empresa, sugerir tendências, desvendar particularidades dela e de seu meio ambiente e permitir ações melhor informadas aos seus gestores.

Pode-se então diferenciar o business inteligence (BI) da mineração de dados (MD) como dois patamares distintos de atuação. O primeiro busca subsidiar a empresa com conhecimento novo e útil acerca do seu meio ambiente e funciona no plano estratégico. O Segundo visa obter a partir dos dados operativos brutos, informação útil para subsidiar a tomada de decisão nos escalões médios e altos da empresa e funciona no plano táctico.

...

Baixar como (para membros premium)  txt (3.2 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com