Aquecedor Solar De Baixo Custo
Pesquisas Acadêmicas: Aquecedor Solar De Baixo Custo. Pesquise 862.000+ trabalhos acadêmicosPor: felipe4e20 • 17/11/2013 • 311 Palavras (2 Páginas) • 505 Visualizações
ATPS EQUAÇÕES DIFERENCIAS
PASSO 1 ETAPA 1
ASPECTOS TÉCNICOS DO USO DE EQUAÇÕES DIFERENCIAIS NA MODELAGEM DE SISTEMAS
O principal desafio que se apresenta na modelagem de sistemas em termos
de equações diferenciais é formular as equações que descrevem o problema a
partir de um conjunto restrito de informações, ou “pistas”, sobre o comportamento geral do sistema. A construção do modelo envolve uma percepção
da situação real em linguagem matemática. Para que o modelo seja uma
boa representação da realidade, é de fundamental importância enunciar de
maneira precisa os princípios que governam o sistema de interesse.
Ora, como cada sistema possui um conjunto de variáveis e interações características, os modelos propostos aparecem nas mais diversas formas, não
havendo uma lista de regras gerais para a representação de determinado sistema ou processo. Apesar disso, segundo Boyce e DiPrima (2012) [2], existem
alguns passos que, frequentemente, fazem parte do processo de modelagem:
(i) Identificação das variáveis que caracterizam o sistema, (ii) Definição das
unidades de medida das variáveis, (iii) Determinação das leis (teóricas ou
empíricas) que regem as relações entre as variáveis e a dinâmica do sistema
e (iv) Expressar as leis em termos das variáveis identificadas.
Uma vez definido o conjunto de equações diferenciais que descrevem a
dinâmica do sistema, é necessário resolver as equações, ou seja, encontrar
suas soluções. Algumas equações diferenciais possuem soluções analíticas,
isto é, podem ser resolvidas “a mão”. Porém, em muitos casos, a complexidade dos sistemas modelados implica em equações complicadas, impossíveis
de resolver analiticamente. Nesses casos, é necessário lançar mão de técnicas
computacionais (numéricas) para a solução do problema. Alguns dos softwares mais usados na solução computacional de equações diferenciais são o Maple e o Mathematica, ferramentas que executam algoritmos de aproximação
numérica. Estes softwares também são úteis na interpretação e representa-
ção gráfica das soluções obtidas, possibilitando um entendimento da solução
bem mais claro do que o extraído de tabelas numéricas ou fórmulas analí-
ticas complicadas. Abordagens computacionais podem ser implementadas
também através de linguagens de programação como C e Fortran.
...