CAPACITORES
Exames: CAPACITORES. Pesquise 862.000+ trabalhos acadêmicosPor: • 27/3/2014 • 1.042 Palavras (5 Páginas) • 484 Visualizações
PRÁTICA DE LABORATÓRIO
CAPACITORES
2º Bimestre
Disciplina: Fisica III - Período: 4º
Belo Horizonte
Outubro 2013
SUMÁRIO
1. INDRODUÇÃO..............PAG. 2
2. RELATÓRIO...................PAG. 3
3. OBJETIVO.......................PAG. 3
4. PROCEDIMENTO EXPERIMENTAL e RESULTADOS..............PAG. 4
5. ANÁLISE DE
DADOS............................PAG.5
6. CONCLUSSÃO...............PAG.5
7. REFERÊNCIAS...............PAG.5
1. INTRODUÇÃO
Também chamado de condensador, ele é um dispositivo de circuito elétrico que tem como função armazenar cargas elétricas e consequente energia eletrostática, ou elétrica. Ele é constituído de duas peças condutoras que são chamadas de armaduras.
Os capacitores são utilizados nos mais variados tipos de circuitos elétricos, nas máquinas fotográficas armazenando cargas para o flash, por exemplo. Eles podem ter o formato cilíndrico ou plano, dependendo do circuito ao qual ele está sendo empregado. Também se parece um pouco com uma bateria. Embora funcionem de maneira totalmente diferente, tanto os capacitores como as baterias armazenam energia elétrica.
Fig.1-Diferentes tipos de Capacitores
2. RELATÓRIO
As informações que estão sendo apresentadas neste trabalho foram recolhidas na aula de Física III ministrada pelo professor Mozar Costa realizada no dia 16/10/2013 no laboratório com os seguintes equipamentos e materiais:
• Protoboard;
• Resistores de 100Ω e 1MΩ;
• Fios e Conexões;
• Um amperímetro;
• Um voltímetro;
• Uma fonte de tensão;
• Capacitores de 100µF, 200 µF e 500 µF.
Dispositivo de controle
Medem ou identificam a corrente elétrica ou a diferença de potencial entre dois pontos.
Ex:Amperímetro: Mede a intensidade da corrente elétrica.
Voltímetro: Mede a ddp entre dois pontos.
Galvanômetro: Identifica a passagem de corrente elétrica ou a existência de ddp.
Fig. 2-Dispositivos de Controle: Amperímetro, voltímetro e galvanômetro, Receptor elétrico
Resistor
Elemento responsável por consumir energia elétrica, e convertê-la em calor, ou seja, energia térmica.
Esse fenômeno é chamado efeito Joule.
Ex: chuveiro elétrico, lâmpadas comuns, fios condutores, ferro elétrico.
Representação de resistores
3. OBJETIVO
Entender as características principais sobre descarga de um capacitor através das resistências internas do multi-teste e do voltímetro analógico e assim poder calcular o valor das tensões em função do tempo durante a descarga e observando o tempo de recarga do mesmo de acordo com o valor das resistências.
4. PROCEDIMENTO EXPERIMENTAL E RESULTADOS
Inicialmente montamos um circuito mantendo as chaves 1 e 2 abertas e a tensão na fonte em 3V. Utilizamos 2 resistores e um capacitor e calculamos a constante de tempo T=RC.
Cálculos utilizados:
(C=Capacitor,carga-R=Resistor, Resistência)
T=RC
R1.MΩ 1x106Ω
C1.100MF 100x10-6F
T = 1x106Ω . 100x10-6F
T =1x106Ω . 1x10-4F
T =1x10²ΩF
T =100s
1º Tensão 3V – Fonte Alimentadora
Carga e corrente elétrica em cada tempo:
ξ=DC=3V
RC=100segundos
(t)= ξ/R.e-T/RC
I(t)= 3v/1x106Ω.e-T/100s
I(t)= 3/1x106.e-T/100s
Cálculo da corrente nos instantes de T
I(t)= 3.e-T/RC
I(t)= Corrente
Tempos 0,1s 0,2s 0,3s 0,4s 0,5s 140s 200s 300s 1000s
DDP em C1 1,9 2,2 2,3 2,3 2,56 2,58 2,82 2,83 2,93
DDP em R1 1,3 0,6 0,81 0,59 0,44 0,44 0,23 0,17 0,13
Observamos que: inicialmente a corrente eletrica quando aumenta o capacitor diminui o resistor.
Calculamos a carga e a corrente elétrica, para cada Tempo, utilizando cada instante de tempo (t) proposto pela tabela x a constante de tempo T= R x C
Sendo assim os respectivo tempos de aferição serão os seguintes:
0,1t = 0,1 x 100s = 10s
0,2t = 0,2 x 100s = 20s
0,3 t = 0,3 x 100s = 30s
0,4 t = 0,4 x 100s = 40s
0,5 t = 0,5 x 100s = 50s
1t = 1 x 100s = 140s
2t = 2 x 100s = 200s
3t = 3 x 100s = 300s
10t = 10 x 100s = 1000s
Para o cálculo da corrente eletrica utilizamos a fórmula:
I(t)= ξ/R . e-T/RC
Portanto; para o 1° periodo de Tempo proposto de t = 10s temos a seguinte função:
I(t)=3/R . e-T/RC
I(t)= 3v/1x106Ω.e-T/100s
I(t)=3/1x106 . e-10/100
I(t)=3/1x106 . e-0,1
I(t)=3/1x106 . 0,9
I(t)=2,71 x 10-6 Amperes
T 10s = 2,71 x 10-6 Amperes
T 20s = 2,45 x 10-6 Amperes
T 30s = 2,22 x 10-6 Amperes
T 40s = 2,01 x 10-6 Amperes
T 50s = 1,81 x 10-6 Amperes
T 100s = 1,1 x 10-6 Amperes
T 200s = 0,4 x 10-6 Amperes
T 300s = 0,14 x 10-6 Amperes
T 1000s = 1,36 x 10-10 Amperes
Q(t)= Capacitância x Fonte ( 1-e-T/RC )
Q(t)=C . ξ (1-e-T/100 )
Q(t)=10-4F . 3V(1-e-10/100 )
Q(t)=10-4F . 3V(1-e-0,1 )
Q(t)=0,0003 C/V . V (1-0,9 )
Q(t)=0,0003 C (01 )
Tempos 10 20 30 40 50 1,40
10,6 10,4 10,2 10,1 10,0 9,5
4,5 4,3 4,1 4,0 4,0 3,4
Gráfico da corrente pelo tempo ( i . t )
6. ANÁLISE DE DADOS
Foi observado que: inicialmente a corrente eletrica quando aumenta o capacitor diminui o resistor e com o multi-teste foi possível calcular melhor as quedas de tensão no capacitor devido à resistência interna do mesmo. Quando se aplica uma d.d.p. o capacitor adquire uma determinada tensão, porém ao desligar a chave ele não se descarrega totalmente fazendo a variação ficar maior.
7. CONCLUSÃO
Observamos e aprendemos através desse experimento que o valor da resistência é fundamental para a descarga do capacitor. Quando utilizado o voltímetro analógico a descarga foi rápida por que a resistência interna do mesmo é muito pequena, portanto quando utilizado o multi-teste foi possível verificar que o capacitor descarrega de forma mais lenta por causa da sua alta resistência interna. Quando o capacitor foi colocado em curto com o uso de um fio a descarga foi quase imediata por causa da baixa resistência do fio.
8. REFERÊNCIA
• http://www.brasilescola.com/fisica/capacitores.htm
...