TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

CONCRETO

Ensaios: CONCRETO. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  8/4/2014  •  3.821 Palavras (16 Páginas)  •  1.036 Visualizações

Página 1 de 16

1. CONCRETO

Concreto é basicamente o resultado da mistura de cimento, água, pedra e areia, sendo que o cimento ao ser hidratado pela água forma uma pasta resistente e aderente aos fragmentos de agregados (pedra e areia), formando um bloco monolítico.

A proporção entre todos os materiais que fazem parte do concreto é também conhecida por dosagem ou traço, sendo que podemos obter concretos com características especiais, ao acrescentarmos à mistura, aditivos, isopor, pigmentos, fibras ou outros tipos de adições.

Cada material a ser utilizado na dosagem deve ser analisado previamente em laboratório (conforme normas da ABNT), a fim de verificar a qualidade e para se obter os dados necessários à elaboração do traço (massa específica, granulometria, etc.).

Outro ponto de destaque no preparo do concreto é o cuidado que se deve ter com a qualidade e a quantidade da água utilizada, pois ela é a responsável por ativar a reação química que transforma o cimento em uma pasta aglomerante. Se sua quantidade for muito pequena, a reação não ocorrerá por completo e se for superior a ideal, a resistência diminuirá em função dos poros que ocorrerão quando este excesso evaporar.

A relação entre o peso da água e do cimento utilizados na dosagem, é chamada de fator água/cimento (a/c).

O cálculo de uma estrutura de concreto é feito com base no projeto arquitetônico da obra e no valor de algumas variáveis, como por exemplo, a resistência do concreto que será utilizado na estrutura.

Portanto, a Resistência Característica do Concreto à Compressão (fck) é um dos dados utilizados no cálculo estrutural. Sua unidade de medida é o MPa (Mega Pascal),

sendo:

Pascal: Pressão exercida por uma força de 1 newton, uniformemente distribuída sobre uma superfície plana de 1 metro quadrado de área, perpendicular à direção da força.

Mega Pascal (MPa) = 1 milhão de Pascal = 10,1972 Kgf/cm².

Por exemplo: O Fck 30 MPa tem uma resistência à compressão de 305,916 Kgf/cm².

da obra, como por exemplo:

Para cotar os preços do concreto junto ao mercado, pois o valor do metro cúbico de concreto varia conforme a resistência (fck), o slump, o uso de adições, etc. No recebimento do concreto na obra, devendo o valor do fck, fazer parte do corpo da nota fiscal de entrega, juntamente o slump.

No controle tecnológico do concreto (conforme normas da ABNT), através dos resultados dos ensaios de resistência à compressão. Neste ensaio, a amostra do concreto é "capeada" e colocada em uma prensa. Nela, recebe uma carga gradual até atingir sua resistência máxima (kgs). Este valor é dividido pela área do topo da amostra (cm²). Teremos então a resistência em kgf/cm². Dividindo-se este valor por 10,1972 se obtém a resistência em MPa.

A ABNT (Associação Brasileira de Normas Técnicas), descreve com exatidão os ensaios de Resistência à Compressão e de Slump Test, através de suas normas. O concreto deve ter uma boa distribuição granulométrica a fim de preencher todos os vazios, pois a porosidade por sua vez tem influência na permeabilidade e na resistência das estruturas de concreto.

O concreto, dentro das variáveis que podem existir nos projetos estruturais, foi o item que mais evoluiu em termos de tecnologia. Antigamente muitos cálculos eram baseados no fck 18 MPa e hoje, conseguimos atingir no Brasil, resistências superiores a 100 MPa. Implica na redução das dimensões de pilares e vigas, no aumento da velocidade das obras, na diminuição do tamanho e do peso das estruturas, formas, armaduras, etc.

1.1 Consistência do Concreto

A consistência é um dos principais fatores que influenciam na trabalhabilidade do concreto. O termo consistência está relacionado a características inerentes ao próprio concreto e está mais relacionado com a mobilidade da massa e a coesão entre seus componentes.

Conforme modificamos o grau de umidade que determina a consistência, alteramos também suas características de plasticidade e permitimos a maior ou menor deformação do concreto perante aos esforços.

Um dos métodos mais utilizados para determinar a consistência é o ensaio de abatimento do concreto, também conhecido como slump test.

A trabalhabilidade depende, além da consistência do concreto, de características da obra e dos métodos adotados para o transporte, lançamento e adensamento do concreto.

A relação entre água e cimento é essencial para a resistência do concreto e não pode ser quebrada. Não dá para remediar sem correr riscos. O correto é sempre fazer ou comprar um concreto de acordo com as características das peças e com os equipamentos de aplicação disponíveis.

As Concreteiras têm sempre profissionais capacitados a indicar o tipo de Slump apropriado para cada situação.

1.2 Agregados para Concreto

Agregados são materiais que, no início do desenvolvimento do concreto, eram adicionados à massa de cimento e água, para dar-lhe “corpo”, tornando-a mais econômica. Hoje eles representam cerca de 80% do peso do concreto e sabemos que além de sua influência benéfica quanto à retração e à resistência, o tamanho, a densidade e a forma dos seus grãos podem definir várias das características desejadas em um concreto.

Devemos ter em mente que um bom concreto não é o mais resistente, mas o que atende as necessidades da obra com relação à peça que será moldada. Logo, a consistência e o modo de aplicação acompanham a resistência como sendo fatores que definem a escolha dos materiais adequados para compor a mistura, que deve associar trabalhabilidade à dosagem mais econômica.

1.3 Aditivos para Concreto e Argamassa

Os aditivos, que não estavam presentes nos primeiros passos do desenvolvimento do concreto, hoje são figuras de fundamental importância para sua composição. Há quem diga que eles são o quarto elemento da família composta por cimento, água e agregados e que sua utilização é diretamente proporcional à necessidade de se obter concretos com características especiais.

Eles tem a capacidade de alterar propriedades do concreto em estado fresco ou endurecido e apesar de estarem divididos em várias categorias, os aditivos carregam em si dois objetivos fundamentais, o de ampliar as qualidades de um concreto, ou de minimizar seus pontos fracos.

Como exemplo, podemos dizer que sua aplicação pode melhorar a qualidade do concreto nos seguintes aspectos:

- Trabalhabilidade,

- Resistência,

- Compacidade,

- Durabilidade,

- Bombeamento,

- Fluidez (auto adensável),

E pode diminuir sua:

- Permeabilidade,

- Retração,

- Calor de hidratação,

- Tempo de pega (retardar ou acelerar),

- Absorção de água.

Sua utilização, porém, requer cuidados. Além do prazo de validade e demais precauções que se devem ter com a conservação dos aditivos é importante estar devidamente informado sobre o momento certo da aplicação, a forma de se colocar o produto e a dose exata.

Tomando-se os cuidados necessários a relação custo-benefício destes produtos é muito satisfatória. As empresas que prestam serviços de concretagem, não abrem mão das suas qualidades e possuem, portanto, equipamentos e controles apropriados para conseguir o melhor desempenho possível dos concretos aditivados.

1.4 Materiais que podem ser adicionados ao concreto

A necessidade de aprimorar certas características do concreto, levou ao desenvolvimento dos aditivos e incentivou também a busca por outros tipos de materiais que, adicionados ao concreto, pudessem melhorar ainda mais o seu desempenho.

Várias experiências de sucesso já consagraram alguns destes materiais, que atingiram objetivos como: aumentar a resistência, colorir o concreto, diminuir o calor de hidratação, reduzir fissuras, etc.

Estes materiais, quando adicionados à mistura, não têm uma classificação oficial, mas podemos dizer que no concreto, tudo que não é cimento, agregado, água ou aditivo, pode ser chamado de adição.

Entre os materiais utilizados como adições temos as fibras de nylon ou de polipropileno que evitam fissuras, os pigmentos para colorir, as fibras de aço que substituem armaduras, o isopor para enchimentos, a sílica ativa e o metacaulim que aumentam a resistência e diminuem a permeabilidade, entre outros.

Como tudo no concreto, os cuidados com as adições devem ser os maiores possíveis, tanto na compatibilidade com os outros componentes do concreto, quanto na realização de dosagens experimentais, definições de sistemas de cura, tipos de fôrmas, etc.

1.5 Tipos de concreto.

a) Concreto dosado em central (CDC): é o concreto usinado, fornecido pelas empresas prestadoras de serviços de concretagem (concreteiras), através dos caminhões betoneira. Através de pesquisa e desenvolvimento, o CDC deve atender a todas as solicitações das normas brasileiras (ABNT), chamando para si, a responsabilidade sobre o controle dos materiais; a dosagem; a mistura; o transporte e a resistência do concreto. Esse tipo de fornecimento só é viável para quantidades acima de 3 m³ e para obras não muito distantes das usinas ou concreteiras, por questão de custo.

Para cada m³, são usados de 80 A 100 KG de aço estrutural, para Kg de aço, são usados cerca de 10 g de arame para amarração.

Nas construções, são usados em média 12 m² de forma para cada m³ de concreto.

b) Concreto Virado na Obra: é uma forma popular de dizer que o concreto esta sendo dosado e misturado, no canteiro da própria obra onde será aplicado.

Baldes, latas ou caixotes de madeira com dimensões conhecidas, são utilizados para fazer a dosagem dos componentes do concreto volumetricamente.

Para a mistura e homogeneização do concreto são utilizadas pás, enxadas, ou pequenas betoneiras elétricas.

Outra medida que deve ser tomada para ‘virar na obra’ e não se perder nos custos é checar o volume recebido de todos os caminhões que chegam com areia e pedra, armazenar o cimento protegido de qualquer tipo de umidade (local coberto e afastado do piso), além de ensaiar estes materiais em laboratório para conseguir um traço mais econômico.

c) Concreto Pré-Moldado: uma estrutura feita em concreto pré-moldado é aquela em que os elementos estruturais, como pilares, vigas, lajes e outros, são moldados e adquirem certo grau de resistência, antes do seu posicionamento definitivo na estrutura. Por este motivo, este conjunto de peças é também conhecido pelo nome de estrutura pré-fabricada.

Estas estruturas podem ser adquiridas junto a empresas especializadas, ou moldadas no próprio canteiro da obra, para serem montadas no momento oportuno. A decisão de produzi-las na própria obra depende sempre de características específicas de cada projeto.

d) Concreto protendido: a protensão do concreto é obtida com a utilização de cabos de aço de alta resistência, que são tracionados e fixados no próprio concreto. Os cabos de protensão têm resistência em média quatro vezes maior do que os aços utilizados no concreto armado.

 Vantagens:

- Seções de concreto menores, conduzindo a estruturas mais esbeltas.

- Menores consumos de armaduras.

- Menor deformabilidade da estrutura.

- Menor fissuração das peças.

O aço empregado no Concreto Protendido é um aço de alta resistência, CP-190, que no caso de lajes, é empregado em cordoalhas de 1/2" ou 5/8".

Os cabos de protensão são formados por duas ou quatro cordoalhas.

A solução é apropriada para pisos de garagens, shoppings e edifícios comerciais que necessitem de grandes vãos. Para vãos entre pilares da ordem de 8 metros a espessura da laje varia de 18 a 22 cm conforme a sobrecarga.

e) Concreto armado: chamamos de concreto armado à estrutura de concreto que possui em seu interior, armações feitas com barras de aço - vergalhões.

Estas armações são necessárias para atender à deficiência do concreto em resistir a esforços de tração (seu forte é a resistência à compressão) e são indispensáveis na execução de peças como pilares, vigas e lajes, por exemplo.

Outra característica deste conjunto é o de apresentar grande durabilidade.

A pasta de cimento envolve as barras de aço de maneira semelhante aos agregados, formando sobre elas uma camada de proteção que impede a oxidação.

As armaduras além de garantirem as resistências à tração e flexão, podem também aumentar a capacidade de carga à compressão.

O projeto das estruturas de concreto armado é calculado por engenheiro especializado em calculo estrutural, conhecidos também como calculistas. São eles quem determinam a resistência do concreto, a bitola do aço, o espaçamento entre as barras e a dimensão das peças que farão parte do projeto (sapatas, blocos, pilares, lajes, vigas, etc).

f) Concreto projetado: ao se utilizar uma resistência maior no concreto, por exemplo, pode-se reduzir o tamanho das peças, diminuindo o volume final de concreto, o tamanho das formas, o tempo de desforma, a quantidade de mão de obra, a velocidade da obra, entre outros.

Concreto que é lançado por equipamentos especiais e em alta velocidade sobre uma superfície, proporcionando a compactação e a aderência do mesmo a esta superfície.

São utilizados para revestimentos de túneis, paredes, pilares, contenção de encostas, etc.

Este Concreto pode ser projetado por via-seca ou via-úmida, alterando desta forma a especificação do equipamento de aplicação e do traço que será utilizado.

g) Concreto Convencional: o concreto sem qualquer característica especial o que é utilizado no dia a dia da construção civil.

Seu Slump Test (valor numérico que caracteriza a consistência do concreto) varia em torno de 40 mm a 70 mm, podendo ser aplicado na execução de quase todos os tipos de estruturas, com os devidos cuidados quanto ao seu adensamento.

Na obra, o caminhão pode descarregar diretamente nas formas, ou pode ser transportado por meio de carrinhos de mão, gericas, gruas ou elevadores, não podendo ser bombeado.

Mesmo sendo um concreto simples, requer como qualquer outro um estudo prévio de seus componentes para a determinação do traço mais econômico, obedecendo as normas da ABNT, para sua elaboração, execução e controle tecnológico da estrutura.

h) Concreto bombeável: os concretos bombeáveis, são elaborados com certas características de fluidez, necessárias para serem bombeados através de uma tubulação que varia de 3 a 5½ polegadas de diâmetro. Esta tubulação tem início em uma bomba de concreto (onde o caminhão betoneira descarrega) e vai até o local de aplicação.

Sua utilização se tornou usual na construção civil, atendendo desde residências a edifícios de grandes alturas.

O serviço de bombeamento se caracteriza por dar uma maior rapidez a concretagem, diminuir a mão de obra para o transporte e aplicação do concreto, eliminar o uso de carrinhos de mão ou similares e utilizar um concreto que permite uma melhor trabalhabilidade, necessitando de menos vibração para um melhor acabamento.

i) Concreto rolado: é utilizado em pavimentações urbanas, como sub-base de pavimentos e barragens de grande porte.

Seu acabamento não é tão bom quanto aos concretos utilizados em pisos Industriais ou na Pavimentação de pistas de aeroportos e rodovias, por isso ele é mais utilizado como sub-base Seu baixo consumo de cimento e sua baixa trabalhabilidade, permitem a compactação através de rolos compressores.

j) Concreto resfriado: concreto gelado, ou melhor, resfriado é aquele que tem a temperatura de lançamento reduzida, através da adição de gelo à mistura, em substituição total ou parcial da água da dosagem.

Para se fazer este tipo de concreto, o gelo deve ser moído e ficar à disposição da central dosadora em caminhões frigoríficos. Ele só deve ser colocado no caminhão betoneira, momentos antes da carga. Em obras de grande porte são necessárias logísticas especiais, que podem incluir até a montagem de uma estrutura para produzir seu próprio gelo.

Sua adição tem como objetivo principal, a redução das tenções térmicas, através da diminuição do calor de hidratação nas primeiras horas. Este procedimento, além de evitar fissuras, mantém por mais tempo a trabalhabilidade e gera uma melhor evolução da resistência à compressão.

O concreto resfriado é mais utilizado em estruturas de grandes dimensões, ou seja, barragens, alguns tipos de fundações, bases para máquinas e blocos com alto consumo de cimento.

k) Concreto Colorido: é obtido através da adição de pigmentos à mistura, que é feita diretamente no caminhão betoneira, logo após a dosagem dos outros materiais.

Além de ser aplicado para dar um melhor efeito arquitetônico, ele já foi utilizado em grandes obras para associar uma cor a uma peça que está sendo concretada (Pilar vermelho, bloco verde, etc.), eliminando o risco da aplicação do concreto fora do local determinado.

Suas cores são duráveis, mas para se ter um bom acabamento, é preciso ter cuidados com a vibração do concreto, com a qualidade das formas e no momento da retirada das mesmas.

São aplicados também em pisos e podem ser associados a texturas.

l) Concreto auto adensável ou fluído: indicados para concretagens de peças densamente armadas, estruturas prémoldadas, fôrmas em alto relevo, fachadas em concreto aparente, painéis arquitetônicos, lajes, vigas, etc.

Este concreto, com grande variedade de aplicações é obtido pela ação de aditivos superplastificantes, que proporcionam maior facilidade de bombeamento, excelente homogeneidade, resistência e durabilidade.

Sua característica é de fluir com facilidade dentro das formas, passando pelas armaduras e preenchendo os espaços sob o efeito de seu próprio peso, sem o uso de equipamento de vibração. Para lajes e calçadas, por exemplo, ele se auto nivela, eliminando a utilização de vibradores e diminuindo o número de funcionários envolvidos na concretagem.

m) Concretos leves: os concretos leves são reconhecidos pelo seu reduzido peso específico e elevada capacidade de isolamento térmico e acústico. Enquanto os concretos normais têm sua densidade variando entre 2300 e 2500 kg/m³, os leves chegam a atingir densidades próximas a 500 kg/m³. Cabe lembrar que a diminuição da densidade afeta diretamente a resistência do concreto.

Os concretos leves mais utilizados são os celulares, os sem finos e os produzidos com agregados leves, como isopor, vermiculita e argila expandida.

Sua aplicação está voltada para procurar atender exigências específicas de algumas obras e também para enchimento de lajes, fabricação de blocos, regularização de superfícies, envelopamento de tubulações, entre outras.

n) Concreto pesado: o concreto pesado é obtido através da utilização de agregados com maior massa específica aparente em sua composição, como por exemplo, a hematita, a magnetita e a barita.

Sua dosagem deve proporcionar que a massa específica do concreto atinja valores superiores a 2800 kg/m³, oferecendo à mistura boas características mecânicas, de durabilidade e capacidade de proteção contra radiações.

Este concreto tem sua aplicação mais freqüente na construção de câmaras de raios-X ou gama, paredes de reatores atômicos, contra-pesos, bases e lastros.

o) Concreto submerso: concreto que é aplicado na presença de água, como alguns tubulões, barragens, estruturas submersas no mar ou em água doce, estruturas de contenção ou em meio à lama bentonítica, como é o caso das paredes diafragma.

Suas características principais são de dar uma maior coesão aos grãos, não permitindo a dispersão do concreto ao entrar em contato com a água e oferecer uma maior resistência química ao concreto.

Sua dosagem é feita com aditivos especiais e dependendo da agressividade do meio onde será inserido, pode necessitar de cimentos especiais e outros tipos de adições em sua composição.

Este concreto propicia maior visibilidade e segurança aos mergulhadores, facilidade de execução e uma diminuição na contaminação da água, reduzindo o impacto ambiental.

p) Concreto celular: faz parte de um grupo denominado de concretos leves, com a diferença de que ao invés de utilizar agregados de reduzida massa específica em sua composição, ele é obtido através da adição de um tipo especial de espuma ao concreto. Sua utilização é bastante difundida pelo mundo, sendo aplicado em paredes, divisórias, nivelamento de pisos e até em peças estruturais e painéis pré-fabricados.

q) Concreto ciclópico: o concreto ciclópico ou fundo de pedra argamassada, como é conhecido em algumas aplicações, nada mais é do que a incorporação de pedras denominadas “pedras de mão” ou “matacão” ao concreto pronto.

Estas pedras não fazem parte da dosagem do concreto e por diversos motivos, não devem ser colocadas dentro do caminhão betoneira, mas diretamente no local onde o concreto foi aplicado.

A pedra de mão é um material de granulometria variável, Elas devem ser originárias de rochas que tenham o mesmo padrão de qualidade das britas utilizadas na confecção do concreto, devem ser limpas e isentas de incrustações nocivas à aplicação.

O controle tecnológico do concreto é o mesmo para os concretos convencionais e as proporções entre concreto e pedras de mão, devem obedecer às determinações do Engenheiro responsável pela obra ou do órgão contratante.

Sua aplicação é justificada em peças de grandes dimensões e com maquinário específico, pois em pequenas obras pode gerar problemas de recebimento, armazenamento, transporte interno, aplicação e controle das dosagens

r) Concreto de Alta Resistência Inicial: o aumento na velocidade das obras que este concreto pode gerar traz consigo a redução dos custos com funcionários, com alugueis de formas, equipamentos e diversos outros ganhos de produtividade.

A alta resistência inicial é fruto de uma dosagem racional do concreto, feita com base nas características específicas de cada obra. Portanto, a obra deve fornecer o maior número de informações possíveis para a elaboração do traço, que pode exigir aditivos especiais, tipos específicos de cimento e adições.

s) Concreto com adição de fibras: as fibras naturais ou sintéticas são empregadas principalmente para minimizar o aparecimento das fissuras originadas pela retração plástica do concreto.

Esta retração pode ter diversas causas, entre elas destacamos a temperatura ambiente, o vento e o calor de hidratação do cimento.

Sua aplicação depende das necessidades de cada obra, mas são utilizadas normalmente em pavimentos rígidos, pisos industriais, projetados, áreas de piscina, pré-moldados, argamassas, tanques e reservatórios, entre outros.

As fibras de aço, além de propiciarem a diminuição das fissuras, tentam onquistar espaço na substituição total ou parcial das telas e barras de aço em algumas aplicações do concreto.

t) Concreto alto desempenho – CAD: é calculado para se obter elevada resistência e durabilidade.

Com a utilização de adições e aditivos especiais, sua porosidade e permeabilidade são reduzidas, tornando as estruturas elaboradas com este tipo de concreto, mais resistentes ao ataque de agentes agressivos tais como cloretos, sulfatos, dióxido de carbono e maresia.

O CAD tem suas resistências superiores a 40 MPa, o que é de extrema importância para estruturas que necessitem ser compostas por peças com menores dimensões.

u) Concreto para Pavimento Rígido: crescente aplicação nas estradas, sua utilização é fundamental na reforma ou construção de pistas de aeroportos, nos corredores de ônibus e em grandes avenidas das cidades.

a opção pelo pavimento rígido, entre elas destacamos: Resistência, durabilidade, menor custo de manutenção, economia em iluminação pública, menor risco de acidentes, menor temperatura superficial, entre outras.

Os custos são mais elevados , mas a durabilidade de uma pista de concreto é muito maior.

v) Concreto de pega programada: dizer que o "concreto está dando pega", significa dizer que o concreto começou a perder a plasticidade, tornando mais difícil a sua aplicação.

O concreto de pega programa é, portanto, a mistura composta por cimento e aditivos apropriados, que através de dosagens experimentais, nos permitem conhecer e controlar o início desta reação.

Ele pode ser aplicado em concretagens a longas distâncias, lançamentos com grandes intervalos de tempo, obras de grandes volumes, não sendo recomendado para pisos industriais, que merecem um estudo especial.

x) Concreto para pisos industriais: este concreto deve ter características de manter a consistência durante a aplicação, ter baixa permeabilidade, elevada resistência à abrasão, baixos níveis de fissuração e um tempo de pega conveniente.

Tais características proporcionam uma menor exsudação, melhor acabamento e maior durabilidade para os pisos.

y) Concreto Extrusado: aquele que é aplicado para a construção de guias e sarjetas.

O concreto utilizado na máquina extrusora deve ser elaborado com brita zero (pedrisco) e ter uma consistência (Slump) de aproximadamente 20 mm para atender às necessidades do equipamento.

O concreto que passa pela máquina extrusora é também conhecido como “concreto extrusado”, “concreto farofa” ou “concreto maquininha”.

z) Grout: é uma argamassa composta por cimento, areia, quartzo, água e aditivos especiais, que tem como destaque sua elevada resistência mecânica.

Ele se caracteriza por ser auto adensável, permitindo sua aplicação no preenchimento de vazios e juntas de alvenaria estrutural, sua utilização está na recuperação de estruturas, na fixação de equipamentos, no reparo de pisos, entre outros.

...

Baixar como  txt (25.4 Kb)  
Continuar por mais 15 páginas »