Calculo Numerico
Pesquisas Acadêmicas: Calculo Numerico. Pesquise 862.000+ trabalhos acadêmicosPor: danielacance • 5/6/2014 • 595 Palavras (3 Páginas) • 305 Visualizações
ETAPA 2
Aula-tema: Conceito de Derivada e Regras de Derivação.
Essa atividade é importante para poder verificar a aplicação da derivada inserida em situações relacionadas às várias áreas como física, biologia, música etc. Uma observação mais aprofundada sobre o conceito de derivação e um olhar mais amplo sobre a constante de Euler, que é muito usada, mas que muitas vezes assumi um papel oculto dentro do próprio cálculo matemático e que por sua vez está intrinsecamente ligado a vários fenômenos naturais.
Para realizá-la, devem ser seguidos os passos descritos.
PASSOS
Passo 1 (Aluno)
O que é a Constante de Euler?
Trata-se de um número irracional, conhecido como “e”. Foi atribuída a este número a notação “e”, em homenagem ao matemático suiço Leonhard Euler (1707-1783), visto ter sido ele um dos primeiros a estudar as propriedades desse número.
Podemos expressar esse número com 40 dígitos decimais, ou seja:
e = 2,718281828459045235360287471352662497757
Pesquisar mais sobre a constante de Euler e fazer um resumo sobre esse assunto de pelo menos uma página, constando dos dados principais a respeito do assunto e curiosidades. Existem inúmeros sites na internet que trazem informações ricas sobre esse assunto. Abaixo deixamos alguns para que possa ser pesquisado, além do Wikipédia.
Construir uma tabela com os cálculos e resultados aplicados na fórmula abaixo, utilizando os seguintes valores para n = {1, 5, 10, 50, 100, 500, 1000, 5000, 10000, 100000, 1000000}, esboçar um gráfico representativo e fazer uma conclusão a respeito.
ou substituindo , temos
- O número de Euler é uma constante matemática que engloba cálculos de nível superior, empregado, a título de exemplo, em: Cálculo de diferenciais e integradas.
O número de Euler é assim chamado em homenagem ao matemático Suiço Leonhard Euler, é à base dos logaritmos naturais.
As verdadeiras razões para escolha da letra e são desconhecidas, mas talvez seja porque e seja a primeira letra da palavra exponencial.
Tem ainda a remarcável propriedade que a taxa de variação de ex no ponto x = t vale e daí sua importância no cálculo diferencial e integral, e seu papel único como base do logaritmo natural.
Ou ainda, se escolherem números entre zero e 1 até que o seu total ultrapasse 1, o número mais provável de seleções será igual a e.
As variantes do nome do número incluem: número de Napier, constante de Néper, número neperiano, constante matemática e número exponencial, etc. A primeira referência à constante foi publicada em 1618 na tabela de um apêndice de um trabalho sobre logaritmos de John Napier. No entanto, este não contém a constante propriamente dita, mas apenas uma simples lista de logaritmos naturais calculados a partir desta. A primeira indicação da constante foi descoberta por JakobBernoulli, quando tentava encontrar um valor para um calculo muito comum de juros compostos.
Historicamente,
...