Juros Compostos
Monografias: Juros Compostos. Pesquise 862.000+ trabalhos acadêmicosPor: epsilva • 14/2/2015 • 692 Palavras (3 Páginas) • 309 Visualizações
JUROS COMPOSTOS
O regime de juros compostos é o mais comum no sistema financeiro e portanto, o mais útil para cálculos de problemas do dia-a-dia. Os juros gerados a cada período são incorporados ao principal para o cálculo dos juros do período seguinte. Chamamos de capitalização o momento em que os juros são incorporados ao principal.
Simplificando, obtemos a fórmula:
M = P . (1 + i)n
Importante: a taxa i tem que ser expressa na mesma medida de tempo de n, ou seja, taxa de juros ao mês para n meses.
Para calcularmos apenas os juros basta diminuir o principal do montante ao final do período:
J = M - P
O atual sistema financeiro utiliza o regime de juros compostos, pois ele oferece uma maior rentabilidade se comparado ao regime de juros simples, onde o valor dos rendimentos se torna fixo, e no caso do composto o juro incide mês a mês de acordo com o somatório acumulativo do capital com o rendimento mensal, isto é, prática do juro sobre juro. As modalidades de investimentos e financiamentos são calculadas de acordo com esse modelo de investimento, pois ele oferece um maior rendimento, originando mais lucro.
No regime de juros simples:
M( n ) = P + n r P
No regime de juros compostos:
M( n ) = P . ( 1 + r ) n
Portanto:
Em um regime de capitalização a juros simples o saldo cresce em progressão aritmética
Em um regime de capitalização a juros compostos o saldo cresce em progressão geométrica
TAXAS EQUIVALENTES
Duas taxas i1 e i2 são equivalentes, se aplicadas ao mesmo Capital P durante o mesmo período de tempo, através de diferentes períodos de capitalização, produzem o mesmo montante final.
Seja o capital P aplicado por um ano a uma taxa anual ia .
O montante M ao final do período de 1 ano será igual a M = P(1 + i a )
Consideremos agora, o mesmo capital P aplicado por 12 meses a uma taxa mensal im .
O montante M’ ao final do período de 12 meses será igual a M’ = P(1 + im)12 .
Pela definição de taxas equivalentes vista acima, deveremos ter M = M’.
Portanto, P(1 + ia) = P(1 + im)12
Daí concluímos que 1 + ia = (1 + im)12
Com esta fórmula podemos calcular a taxa anual equivalente a uma taxa mensal conhecida.
TAXAS NOMINAIS
A taxa nominal é quando o período de formação e incorporação dos juros ao Capital não coincide com aquele a que a taxa está referida.
TAXAS
...