TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Questoes De Contabilidade

Dissertações: Questoes De Contabilidade. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  11/3/2015  •  492 Palavras (2 Páginas)  •  172 Visualizações

Página 1 de 2

Tipos de Função

Depois de conhecermos o conceito de função, estudaremos agora como classificá-las.

Se você não sabe do que se tratam os símbolos D(f), CD(f) e Im(f), convém revisar a simbologia utilizada ao trabalharmos com funções, ela será necessária para uma boa compreensão desta matéria.

Estudaremos os três tipos de função que são: Sobrejetora, injetora e bijetora.

Função Sobrejetora

Vamos analisar o diagrama de flechas ao lado:

Como sabemos o conjunto A é o domínio da função e o conjunto B é o seu contradomínio.

É do nosso conhecimento que o conjunto imagem é o conjunto formado por todos os elementos do contradomínio que estão associados a pelo menos um elemento do domínio e neste nosso exemplo, todos os elementos de B estão associados a pelo menos um elemento de A, logo nesta função o contradomínio é igual ao conjunto imagem.

Classificamos como sobrejetora as funções que possuem o contradomínio igual ao conjunto imagem.

Note que em uma função sobrejetora não existem elementos no contradomínio que não estão flechados por algum elemento do domínio.

Nesta função de exemplo temos:

Domínio: D(f) = { -2, -1, 1, 3 }

Contradomínio: CD(f) = { 12, 3, 27 }

Conjunto Imagem: Im(f) = { 12, 3, 27 }

Esta função é definida por:

Substituindo a variável independente x, de 3x2, por qualquer elemento de A, iremos obter o elemento de B ao qual ele está associado, isto é, obteremos f(x).

Do que será explicado a seguir, poderemos concluir que embora esta função seja sobrejetora, ela não é uma função injetora.

Função Injetora

Vejamos agora este outro diagrama de flechas:

Podemos notar que nem todos os elementos de B estão associados aos elementos de A, isto é, nesta função o conjunto imagem difere do contradomínio, portanto esta não é uma função sobrejetora.

Além disto podemos notar que esta função tem uma outra característica distinta da função anterior.

Veja que não há nenhum elemento em B que está associado a mais de um elemento de A, ou seja, não há em B qualquer elemento com mais de uma flechada. Em outras palavras não há mais de um elemento distinto de A com a mesma imagem em B.

Nesta função temos:

Domínio: D(f) = { 0, 1, 2 }

Contradomínio: CD(f) = { 1, 2, 3, 5 }

Conjunto Imagem: Im(f) = { 1, 3, 5 }

Definimos esta função por:

...

Baixar como (para membros premium)  txt (3 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com