Campo Eletrico
Ensaios: Campo Eletrico. Pesquise 861.000+ trabalhos acadêmicosPor: adrielcorreia • 5/11/2013 • 825 Palavras (4 Páginas) • 274 Visualizações
O campo magnético e ímãs permanentes
Ver artigos principais: Momento magnético e Íman
Ímãs permanentes são objetos que produzem seus próprios campos magnéticos persistentes. Todos os ímãs permanentes possuem os pólos sul e norte. Eles são feitos de materiais ferromagnéticos como ferro e níquel que foram magnetizados. A força do ímã é representada pelo seu momento magnético, m; para magnetos simples, m aponta na direção de uma linha desenhada do polo sul ao polo norte do magneto. Para mais detalhes sobre magnetos veja magnetização abaixo e o artigo ferromagnetismo.
Força em um magneto devido a um B não-uniforme
Pólos magnéticos iguais quando aproximados se repelem, enquanto polos opostos se atraem. Este é um exemplo específico de uma regra geral de que os magnetos são atraídos (ou repelidos dependendo da orientação do magneto) para regiões de campo magnético maior. Por exemplo, pólos opostos atraem-se por que cada magneto é empurrado no campo magnético maior do pólo do outro. A força é atrativa por que cada magneto m está na mesma direção do campo magnético B do outro.
Revertendo a direção de m reverte a força resultante. Magnetos com m oposto a B são empurrados para regiões de campo magnético menor, desde que o magneto, e portanto, m não girar devido ao torque magnético. Este fenômeno corresponde ao de pólos semelhantes de dois magnetos sendo aproximados. A capacidade de um campo magnético não uniforme de ordenar dipolos com orientação diferente a base do experimento de Stern-Gerlach, que estabeleceu a natureza quântica dos dipolos magnéticos associados com átomos e elétrons.6 7
Matematicamente, a força em um magneto de momento magnético m é:8
\mathbf{F} = \mathbf{\nabla} \left(\mathbf{m}\cdot\mathbf{B}\right),
onde o gradiente ∇ é a mudança da quantidade m·B por unidade de distância e a direção é aquela do aumento máximo de m·B. O produto escalar m·B = |m||B|cos(θ), onde | | representa a magnitude do vetor e θ é o ângulo entre eles. Esta equação somente é válida para magnetos de tamanho zero, mas pode ser usada como uma aproximação para magnetos não muito grandes. A força magnética em magnetos maiores é determinada pela divisão deles em regiões menores tendo cada uma delas seu próprio m então somando as forças em cada uma destas regiões.
A força entre dois magnetos é bastante complicada e depende da orientação dos magnetos e da distância relativa entre eles. A força é particularmente sensível a rotações dos magnetos devido ao torque magnético.
Em muitos casos, a força e o torque em um magneto pode ser modelada assumindo uma 'carga magnética' nos pólos de cada magneto e usando um equivalente magnético à lei de Coulomb. Neste modelo, cada pólo magnético é uma fonte de um campo H que é mais forte próximo ao pólo. Um campo H externo exerce uma força na direção do H em um pólo norte e oposta a H em um pólo sul. Em um campo magnético não uniforme cada pólo vê um campo diferente e é sujeito a uma força diferente. A diferença entre as duas forças move o magneto na direção em que o campo magnético cresce
...