TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Velocidade instantânea

Seminário: Velocidade instantânea. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  2/5/2013  •  Seminário  •  3.182 Palavras (13 Páginas)  •  894 Visualizações

Página 1 de 13

ETAPA 1

Passo 1

Pesquisar o conceito de velocidade instantânea a partir do limite, com ∆t →0.

Velocidade instantânea

Como sabemos existem muitas maneiras de descrever quão rapidamente algo se move: velocidade média e velocidade escalar média, ambas medidas sobre um intervalo de tempo Δt. Entretanto, a expressão “quão rapidamente” mais comumente se refere a quão rapidamente um partícula está se movendo em um dada instante – sua velocidade instantânea ou simplesmente velocidade v.

A velocidade em qualquer instante de tempo é obtida a partir da velocidade média reduzindo-se o intervalo de tempo Δt, fazendo-o tender a zero. À medida que Δt é reduzido, a velocidade média se aproxima de um valor limite, que é a velocidade naquele instante:

v=lim∆t→0∆x∆t= dxdt

Esta equação mostra duas características da velocidade instantânea v. Primeiro v é a taxa na qual a posição da partícula x está em relação à t. Segundo, v em qualquer instante é a inclinação da curva (ou coeficiente angular da reta tangente á curva) posição-tempo da partícula no ponto representando esse instante. A velocidade é outra grandeza vetorial, e assim possui direção e sentido associados.

Comparar a fórmula aplicada na física com a fórmula usada em cálculo e explicar o significado da função v (velocidade instantânea), a partir da função s (espaço), utilizando o conceito da derivada que você aprendeu em cálculo, mostrando que a função velocidade é a derivada da função espaço.

Em cálculo a velocidade instantânea é o número a que tendem as velocidades médias quando o intervalo diminui de tamanho, isto é, quando h torna-se cada vez menor. Definimos então, velocidade instantânea = Limite, quando h tende a zero, de sa+h-s(a)h.

Isso é escrito de forma mais compacta usando a notação de limite, da seguinte maneira:

Seja s(t) a posição no instante t. Então, a velocidade instantânea em t = a é definida como:

velocidade instantânea em t=a= limh→0sa+h-s(a)

Em palavras, a velocidade instantânea de um objeto em um instante t = a é dada pelo limite da velocidade média em um intervalo quando esse intervalo diminui em torno de a.

As equações utilizadas tanto em física como em calculo seguem a mesmo logica, sendo que em física utilizamos a derivada para descrever a posição da partícula dado sua posição em relação ao seu tempo expressada por dx (t)dt t=t0 em que dx e a denotação da função posição ou espaço e t a denotação da função tempo.

Dar um exemplo, mostrando a função velocidade como derivada da função do espaço, utilizando no seu exemplo a aceleração como sendo a somatória do último algarismo que compõe o RA dos alunos integrantes do grupo.

Exemplo: x = 8t² - 2t no tempo em 1 segundo.

v= dxdt 8t2-2t

Derivando posição em relação ao tempo: v=8.2t2-1-2.1t1-1 → v= 16t-2

Aplicando no tempo igual a 1 segundo: v= 16.1-2 → v=14 m/s

Derivando velocidade em relação ao tempo: a= dvdt 16t-2 → a= 16.1t1-1 → a=16

A aceleração não varia em nenhum instante.

Passo 2

Montar uma tabela, usando seu exemplo acima, com os cálculos e plote num gráfico as funções S(m) x t(s) e V(m/s) x t(s) para um intervalo entre 0 a 5s, diga que tipo de função você tem e calcular a variação do espaço percorrido e a variação de velocidade para o intervalo dado. Calcular a área formada pela função da velocidade, para o intervalo dado acima.

| S(m) | S(m) x t(s) | V(m/s) x t(s)

TEMPO | X=8t²-2t | dxdt=16t-2 | dvdt=16

0 | 0 m | -2 m/s | 16 m/s²

1 | 6 m | 14 m/s | 16 m/s²

2 | 28 m | 30 m/s | 16 m/s²

3 | 66 m | 46 m/s | 16 m/s²

4 | 120 m | 62 m/s | 16 m/s²

5 | 190 m | 78 m/s | 16 m/s²

Passo 3

Pesquisar sobre a aceleração instantânea de um corpo móvel, que define a aceleração como sendo a derivada da função velocidade.

Explicar o significado da aceleração instantânea a partir da função s (espaço), mostrando que é a aceleração é a derivada segunda.

Utilizar o exemplo do Passo 1 e mostrar quem é a sua aceleração a partir do conceito de derivação aplicada a sua função espaço e função velocidade.

Quando a velocidade de uma partícula varia diz-se que a partícula sofre aceleração, para sabemos como ela esta variando pegamos a sua velocidade e a derivamos em relação ao tempo sendo: a= dvdt, pois a aceleração da partícula em qualquer instante é a taxa na qual sua velocidade está mudando naquele instante. Graficamente, a aceleração em qualquer ponto é a inclinação da curva de v(t) naquele ponto. Em palavras, a aceleração de uma partícula em qualquer instante é dada pela derivada segunda de sua posição x(t) em relação ao tempo a= dxdt= ddt dxdt= d²xdt².

Derivando velocidade em relação ao tempo: a= dvdt 16t-2 → a= 16.1t1-1 → a=16

Passo 4

Plotar num gráfico sua função a (m/s2) x t(s) para um intervalo de 0 a 5 segundos e dizer que tipo de função você tem.

ETAPA 2

Passo1

Pesquisar mais sobre a constante de Euler e fazer um resumo sobre esse assunto de pelo menos uma página, constando dos dados principais a respeito do assunto e curiosidades.

Constante de Euler

O número de Euler é uma constante matemática que engloba cálculos de nível superior, empregado, a título de exemplo, em: Cálculo de diferenciais e integradas.

O número de Euler é assim chamado em homenagem ao matemático Suíço Leonhard Euler, é à base dos logaritmos naturais.

Leonhard Euler começou a usar a letra e para representar a constante em 1727, e o primeiro

...

Baixar como (para membros premium)  txt (19.8 Kb)  
Continuar por mais 12 páginas »
Disponível apenas no TrabalhosGratuitos.com