Genetica
Tese: Genetica. Pesquise 862.000+ trabalhos acadêmicosPor: 852456 • 25/10/2013 • Tese • 2.185 Palavras (9 Páginas) • 278 Visualizações
Genética
Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Parte da série de Biologia sobre
Genética
Imagem mostrando a estrutura do DNA
Componentes chave
Cromossomo
DNA · RNA
Genoma
Hereditariedade
Mutação
Nucleotídeo
Variação
Glossário
Índice
História e tópicos
Introdução
História
Genética clássica
Evolução · Molecular
Herança mendeliana
Genética molecular
Investigação
Sequenciamento de DNA
Engenharia genética
Genômica · Tópicos
Genética médica
Ramos da genética
Portal da biologia • v • e
Para uma introdução ao tema mais geral e menos técnica, veja Introdução à genética.
Genética (do grego genno; fazer nascer) é a ciência dos genes, da hereditariedade e da variação dos organismos. Ramo da biologia que estuda a forma como se transmitem as características biológicas de geração para geração.1 O termo genética foi primeiramente aplicado para descrever o estudo da variação e hereditariedade, pelo cientista William Bateson2 numa carta dirigida a Adam Sedgewick, da data de 18 de Abril de 1908.
Já no tempo da pré-história os agricultores, utilizavam conhecimentos de genética através da domesticação e do cruzamento seletivo de animais e plantas para melhorar suas espécies. Atualmente é a genética que proporciona as ferramentas necessárias para a investigação das funções dos genes, isto é, a análise das interacções genéticas. No interior dos organismos, a informação genética está normalmente contida nos cromossomos, onde é representada na estrutura química da molécula de DNA o que diminui bastante o tempo de espera no cruzamento das espécies.
Os genes, em geral, codificam a informação necessária para a síntese de proteínas, no entanto diversos tipos de gene não-codificantes de proteínas já foram identificados, como por exemplo genes precursores de microRNAs (miRNA) ou de RNAs estruturais, como os ribossômicos. As proteínas, por sua vez, podem atuar como enzimas (catalisadores) ou apenas estruturalmente, funções estas diretamente responsáveis pelo fenótipo final de um organismo. O conceito de "um gene, uma proteína" é simplista e equivocado: por exemplo, um único gene poderá produzir múltiplos produtos (diferentes RNAs ou proteínas), dependendo de como a transcrição é regulada e como seu mRNA nascente é processador pela maquinaria de splicing.
História
Em 1866, Gregor Mendel estabeleceu pela primeira vez os padrões de hereditariedade de algumas características existentes em ervilheiras, mostrando que obedeciam a regras estatísticas simples.3 Embora nem todas as características mostrem estes padrões de hereditariedade mendeliana, o trabalho de Mendel provou que a aplicação da estatística à genética poderia ser de grande utilidade.
A partir da sua análise estatística, Mendel definiu o conceito de alelo como sendo a unidade fundamental da hereditariedade. O termo "alelo" tal como Mendel o utilizou, expressa a ideia de "gene", enquanto que nos nossos dias ele é utilizado para especificar uma variante de um gene.
Só depois da morte de Mendel é que o seu trabalho foi redescoberto, entendido (início do século XX) e lhe foi dado o devido valor por cientistas que então trabalhavam em problemas similares.
Mendel não tinha conhecimento da natureza física dos genes. O trabalho de Watson e Crick em 1953 mostrou que a base física da informação genética eram os ácidos nucleicos, especificamente o DNA,4 embora alguns vírus possuam genomas de RNA. A descoberta da estrutura do DNA, no entanto, não trouxe imediatamente o conhecimento de como as milhares de proteínas de um organismo estariam "codificadas" nas sequências de nucleotídeos do DNA. Esta descoberta crítica para o surgimento da moderna Biologia Molecular só foi alcançada no começo da década de 1960 por Marshall Nirenberg, que viria a receber o Nobel em 1968, assim como Watson e Crick cinco anos antes. A manipulação controlada do DNA (engenharia genética) pode alterar a hereditariedade e as características dos organismos.
Mendel teve sucesso onde vários experimentadores, que também faziam cruzamentos com plantas e com animais, falharam. O fracasso desses pesquisadores explica-se pelo seguinte: eles tentavam entender a herança em bloco, isto é, considerando todas as características do individuo ao mesmo tempo; não estudavam uma característica de cada vez, como fez Mendel. Somente quando se compreendia o mecanismo de transmissão de certa característica é que Mendel se dedicava a outra, verificando se as regras valiam também nesso caso.
O sucesso de Mendel deveu-se também a algumas particularidades do método que usava: a escolha do material, a escolha de características constantes e o tratamento dos resultados. Além de ele ter escolhido ervilhas para efetuar seus experimentos, espécie que possui ciclo de vida curto, flores hermafroditas o que permite a autofecundação, características variadas e o método empregado na organização das experimentações eram associados à aplicação da estatística, estimando matematicamente os resultados obtidos.
Áreas da genética
Genética clássica
Ver artigo principal: Genética clássica
A Genética clássica consiste nas técnicas e métodos da genética, anteriores ao advento da biologia molecular.5 Depois da descoberta do código genético e de ferramentas de clonagem
...