TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Algoritmo

Pesquisas Acadêmicas: Algoritmo. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  4/9/2013  •  574 Palavras (3 Páginas)  •  751 Visualizações

Página 1 de 3

"O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas estão organizadas em um círculo e que temos um inteiro positivo M ≤ N. Começando com uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N, M) dos inteiros 1, 2, ... , N.

Entrada

Definir como NC (1 ≤ NC ≤ 30) os casos de teste. Em cada caso de teste de entrada haverá um par de números inteiros positivos N (1 ≤ N ≤ 10000) e M (1 ≤ M ≤ 1000). O número N representa a quantidade de pessoas do círculo, numerados de 1 a N. O número M representa o tamanho do passo entre duas pessoas no círculo.

Saída

Para cada caso de teste, haverá uma linha de saída no seguinte formato: Case N: M sempre com um espaço antes de N e M. Sendo M a pessoa que restou no círculo."

"O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas estão organizadas em um círculo e que temos um inteiro positivo M ≤ N. Começando com uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N, M) dos inteiros 1, 2, ... , N.

Entrada

Definir como NC (1 ≤ NC ≤ 30) os casos de teste. Em cada caso de teste de entrada haverá um par de números inteiros positivos N (1 ≤ N ≤ 10000) e M (1 ≤ M ≤ 1000). O número N representa a quantidade de pessoas do círculo, numerados de 1 a N. O número M representa o tamanho do passo entre duas pessoas no círculo.

Saída

Para cada caso de teste, haverá uma linha de saída no seguinte formato: Case N: M sempre com um espaço antes de N e M. Sendo M a pessoa que restou no círculo."

O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas estão organizadas em um círculo e que temos um inteiro positivo M ≤ N. Começando com uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N, M) dos inteiros 1, 2, ... , N.

Entrada

Definir como NC (1 ≤ NC ≤ 30) os casos de teste. Em cada caso de teste de entrada haverá um par de números inteiros positivos N (1 ≤ N ≤ 10000) e M (1 ≤ M ≤ 1000). O número N representa a quantidade de pessoas do círculo, numerados de 1 a N. O número M representa o tamanho do passo entre duas pessoas no círculo.

Saída

Para cada caso de teste, haverá uma linha de saída no seguinte formato: Case N: M sempre com um espaço

...

Baixar como (para membros premium)  txt (3.1 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com