TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Lógica de aprendizagem

Tese: Lógica de aprendizagem. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  20/11/2014  •  Tese  •  4.180 Palavras (17 Páginas)  •  271 Visualizações

Página 1 de 17

O estudo da lógica

Gregor Reisch "A lógica apresenta os seus temas centrais", Margarita Philosophica, 1503/08 (?). Os dois cães veritas e falsitas correm atrás da lebre problema, a lógica apressa-se armada com a sua espada syllogismus. Em baixo, à esquerda, encontra-se Parménides, graças a quem a lógica terá sido introduzida na filosofia.

O conceito de forma lógica é central à lógica, que se baseia na ideia de que a validade de um argumento é determinada pela sua forma lógica, não pelo seu conteúdo. A lógica silogística aristotélica tradicional e a lógica simbólica moderna são exemplos de lógicas formais.

Lógica informal é o estudo da argumentação em língua natural. O estudo de falácias é um ramo particularmente importante da lógica informal. Os Diálogos de Platão 5 são bons exemplos de lógica informal.

Lógica formal é o estudo da inferência com conteúdo puramente formal. Uma inferência possui um conteúdo puramente formal se ele pode ser expresso como um caso particular de uma regra totalmente abstrata, isto é, uma regra que não é sobre uma qualquer coisa em particular. As obras de Aristóteles contêm o primeiro estudo formal da lógica. A lógica formal moderna segue e amplia o trabalho de Aristóteles.6 Em muitas definições de lógica, inferência lógica e inferência com conteúdo puramente formal são a mesma coisa. Isso não esvazia a noção de lógica informal, porque nenhuma lógica formal captura todas as nuances da língua natural.

Lógica simbólica é o estudo das abstrações simbólicas que capturam as características formais da inferência lógica.7 8 A lógica simbólica é frequentemente dividida em dois ramos: lógica proposicional e a lógica de predicados.

Lógica matemática é uma extensão da lógica simbólica em outras áreas, em especial para o estudo da teoria dos modelos, teoria da demonstração, teoria dos conjuntos e teoria da recursão.

História

Ver artigo principal: História da lógica

O primeiro trabalho feito sobre o tema da lógica é o de Aristóteles (na verdade, os sofistas e Platão já haviam se dedicado a questões lógicas, o trabalho de Aristóteles, porém, é mais amplo, rigoroso e sistematizado).9 10 A lógica aristotélica tornou-se amplamente aceita em ciências e matemática e manteve-se em ampla utilização no Ocidente até o início do século XIX.11 O sistema lógico de Aristóteles foi responsável pela introdução do silogismo hipotético,12 lógica modal temporal13 14 e lógica indutiva.15 Na Europa, durante o final do período medieval, grandes esforços foram feitos para mostrar que as ideias de Aristóteles eram compatíveis com a fé cristã. Durante a Alta Idade Média, a lógica se tornou o foco principal dos filósofos, que se engajaram em análises lógicas críticas dos argumentos filosóficos (ver: Filosofia cristã).

Lógica aristotélica

Ver artigo principal: Lógica aristotélica

Dá-se o nome de Lógica aristotélica ao sistema lógico desenvolvido por Aristóteles a quem se deve o primeiro estudo formal do raciocínio. Dois dos princípios centrais da lógica aristotélica são a lei da não-contradição e a lei do terceiro excluído.

A lei da não-contradição diz que nenhuma afirmação pode ser verdadeira e falsa ao mesmo tempo e a lei do terceiro excluído diz que qualquer afirmação da forma *P ou não-P* é verdadeira. Esse princípio deve ser cuidadosamente distinguido do *princípio de bivalência*, o princípio segundo o qual para toda proposição (p), ela ou a sua negação é verdadeira.

A lógica aristotélica, em particular, a teoria do silogismo, é apenas um fragmento da assim chamada lógica tradicional.

Lógica formal

A Lógica Formal, também chamada de Lógica Simbólica, preocupa-se, basicamente, com a estrutura do raciocínio. A Lógica Formal lida com a relação entre conceitos e fornece um meio de compor provas de declarações. Na Lógica Formal os conceitos são rigorosamente definidos, e as orações são transformadas em notações simbólicas precisas, compactas e não ambíguas. As letras minúsculas p, q e r, em fonte itálica, são convencionalmente usadas para denotar proposições:

p: 1 + 2 = 3

Esta declaração define que p é 1 + 2 = 3 e que isso é verdadeiro.

Duas proposições --ou mais proposições-- podem ser combinadas por meio dos chamados operadores lógicos binários , formando conjunções, disjunções ou condicionais. Essas proposições combinadas são chamadas proposições compostas. Por exemplo:

p: 1 + 1 = 2 e

Neste caso, e é uma conjunção. As duas proposições podem diferir totalmente uma da outra!

Na matemática e na ciência da computação, pode ser necessário enunciar uma proposição dependendo de variáveis:

p: n é um inteiro ímpar.

Essa proposição pode ser ou verdadeira ou falsa, a depender do valor assumido pela variável n.

Uma fórmula com variáveis livres é chamada função proposicional com domínio de discurso D. Para formar uma proposição , devem ser usados quantificadores. "Para todo n", ou "para algum n" podem ser especificados por quantificadores: o quantificador universal, ou o quantificador existencial, respectivamente. Por exemplo:

para todo n em D, P(n).

Isto pode ser escrito como:

\forall n\in D, P(n)

Quando existem algumas variáveis livres, a situação padrão na análise matemática desde Weierstrass, as quantificações para todos ... então existe ou então existe ... isto para todos (e analogias mais complexas) podem ser expressadas.

Lógica material

Trata da aplicação das operações do pensamento, segundo a matéria ou natureza do objeto a conhecer. Neste caso, a lógica é a própria metodologia de cada ciência. É, portanto, somente no campo da lógica material que se pode falar da verdade: o argumento é válido quando as premissas são verdadeiras e se relacionam adequadamente à conclusão.

Lógica

...

Baixar como (para membros premium)  txt (26.8 Kb)  
Continuar por mais 16 páginas »
Disponível apenas no TrabalhosGratuitos.com