O Sistema de Equações
Por: Gessica Veiga • 28/4/2015 • Relatório de pesquisa • 4.353 Palavras (18 Páginas) • 111 Visualizações
SISTEMAS DE EQUAÇÕES DO 1º GRAU
I – INTRODUÇÃO:
Os sistemas de equação são ferramentas muito comuns na resolução de problemas em várias áreas ( matemática, química, física, engenharia,...) e aparecem sempre em concursos e exames, como é o caso do vestibular. Os sistemas, geralmente, são resolvidos com uma certa facilidade o que causa muitas vezes uma desatenção, por parte do aluno, já que ele não tem dificuldade para encontrar a solução do sistema. Mas ele esquece que a dificuldade está na armação e principalmente na solução final da questão. Os sistemas são ferramentas que mesmo funcionando necessitam de alguém que saiba o construir com elas.
II – MÉTODOS DE RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES DO 1º GRAU
Além de saber armar o sistema é bom saber fazer a escolha pelo método mais rápido de resolução.
Vou apresentar três métodos sendo que o mais utilizado é o método da adição.
1º) método da adição
Este método consiste em deixar os coeficientes de uma incógnita opostos. Desta forma, somando-se membro a membro as duas equações recai-se em um equação com uma única incógnita.
EXEMPLO: 2x + y = 5
2x + 3y = 2
1º passo: vamos multiplicar a primeira linha por -1 para podermos cortar –2x com 2x
2x + y = 6 . ( - 1 ) - 2x - y = - 6
2x + 3y = 2 2x + 3y = 2
2y = - 4
y = -4/2
y = - 2
2º passo: Substituir y = - 2, em qualquer um das equações acima e encontrar o valor de x.
2x + y = 6
2x + ( -2 ) = 6
2x – 2 = 6
2x = 6 + 2
x = 8/2
x = 4
3º passo: dar a solução do sistema.
S = { (4, -2) }
2º) método da substituição
Este método consiste em isolar uma incógnita numa equação e substituí-la na outra equação do sistema dado, recaindo-se numa equação do 1º grau com uma única incógnita.
EXEMPLO: 2x + y = 5
2x + 3y = 2
1º passo: vamos isolar o y na primeira equação para podermos substituir na Segunda equação.
2x + y = 6 2x + y = 6 y = 6 – 2x
2x + 3y = 2
2º passo: Substituir y = 6 – 2x, na segunda equação para encontrar o valor de x.
2x + 3y = 2
2x + 3.( 6 – 2x ) = 2
2x + 18 – 6x = 2
- 4x = 2 – 18
- 4x = - 16
- x = -16/4
- x = - 4 . ( - 1 )
x = 4
3º passo: Substituir x = 4 em y = 6 – 2x, para encontrar o valor de y.
y = 6 – 2x
y = 6 – 2.4
y = 6 – 8
y = -2
4º passo: dar a solução do sistema.
S = { (4, -2) }
3º) método da igualdade
Este método consiste em isolar uma incógnita numa equação e a mesma incógnita na outra, depois basta igualar as duas, recaindo-se numa equação do 1º grau com uma única incógnita.
EXEMPLO: 2x + y = 5
2x + 3y = 2
1º passo: vamos isolar o y na primeira e na segunda equação equação para podermos igualar as equações.
2x + y = 6 2x + y = 6 y = 6 – 2x
2x + 3y = 2 2x + 3y = 2 y = ( 2 – 2x ) / 3
2º passo: igualar as duas equações para encontrar o valor de x.
6 – 2x = ( 2 – 2x ) / 3
3 3.( 6 – 2x ) = 2 – 2x
4 18 – 6x = 2 – 2x
2x – 6x = 2 – 18
-4x = -16
-x = -16/4
-x = -4 . ( -1 )
x = 4
3º passo: Substituir x = 4 em y = 6 – 2x, para encontrar o valor de y.
y = 6 – 2x
y = 6 – 2.4
y = 6 – 8
y = -2
4º passo: dar a solução do sistema.
S = { (4, -2) }
Como podemos observar, independente do método, a solução é a mesma. Então basta escolher o método que seja mais rápido e seguro.
APLICAÇÕES DE SISTEMAS DE EQUAÇÕES
01 – Num depósito existem 24 extintores de
...