TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Es Das Dasdas Ds Dsdasd

Ensaios: Es Das Dasdas Ds Dsdasd. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  5/10/2013  •  3.456 Palavras (14 Páginas)  •  1.315 Visualizações

Página 1 de 14

O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas

estão organizadas em um círculo, e que temos um inteiro positivo M ≤ N. Começando com

uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada

M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do

círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A

ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N,

M) dos inteiros 1, 2, ... , N. O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas

estão organizadas em um círculo, e que temos um inteiro positivo M ≤ N. Começando com

uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada

M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do

círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A

ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N,

M) dos inteiros 1, 2, ... , N. O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas

estão organizadas em um círculo, e que temos um inteiro positivo M ≤ N. Começando com

uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada

M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do

círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A

ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N,

M) dos inteiros 1, 2, ... , N. O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas

estão organizadas em um círculo, e que temos um inteiro positivo M ≤ N. Começando com

uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada

M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do

círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A

ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N,

M) dos inteiros 1, 2, ... , N. O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas

estão organizadas em um círculo, e que temos um inteiro positivo M ≤ N. Começando com

uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada

M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do

círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A

ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N,

M) dos inteiros 1, 2, ... , N. O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas

estão organizadas em um círculo, e que temos um inteiro positivo M ≤ N. Começando com

uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada

M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do

círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A

ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N,

M) dos inteiros 1, 2, ... , N. O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas

estão organizadas em um círculo, e que temos um inteiro positivo M ≤ N. Começando com

uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada

M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do

círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A

ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N,

M) dos inteiros 1, 2, ... , N. O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas

estão organizadas em um círculo, e que temos um inteiro positivo M ≤ N. Começando com

uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada

M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do

círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A

ordem em que as pessoas são removidas do círculo define a permutação de Josephus de (N,

M) dos inteiros 1, 2, ... , N. O Problema de Josephus é definido como mostrado a seguir. Vamos supor que N pessoas

estão organizadas em um círculo, e que temos um inteiro positivo M ≤ N. Começando com

uma primeira pessoa designada, prosseguimos em torno do círculo, removendo cada

M-ésima pessoa. Depois que cada pessoa é removida, a contagem prossegue em torno do

círculo restante. Esse processo continua até todas as M pessoas terem sido removidas. A

ordem em que as pessoas são removidas do círculo define

...

Baixar como (para membros premium)  txt (20 Kb)  
Continuar por mais 13 páginas »
Disponível apenas no TrabalhosGratuitos.com