TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Análise De Crédito Bancário

Monografias: Análise De Crédito Bancário. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  30/10/2014  •  574 Palavras (3 Páginas)  •  240 Visualizações

Página 1 de 3

1 Base de Dados

• Créditos Bancários Concedidos.

• A base de dados é composta por 3 bases de treinamento, com 1500 exemplos cada escolhidos aleatoriamente a partir da base original.

• 3 bases de testes com 577 exemplos.

• Possui 11 atributos de entrada ( Estado Civil, Número de Dependentes, Renda Familiar, Tipo de Residência, Valor do Empréstimo, Número de Parcelas, Valor da Parcela, Possui Telefone, Idade, Tempo de Moradia, Valor da Entrada).

• 2 classes de saída, a indicar se o cliente pagou o empréstimo (=1) ou se não pagou (=0).

2 Configuração da Rede

Este trabalho por objetivo apresentar uma aplicação de redes neurais para a identificação de bons e maus pagadores em operações de crédito bancário. Por meio do uso de redes neurais baseadas no Multilayer Perceptron (MLP) e modelagem no software WEKA.

A taxa de aprendizagem e de momento utilizada nos treinamentos foi de 0,03 e 0,02, respectivamente.

A rede neural empregada apresenta apenas uma camada intermediária de neurônios. Segundo o Teorema de Kolmogorov, essa topologia da rede (com uma ou duas camadas intermediárias) demonstra bons resultados quando a tarefa é a aproximação ou a generalização de funções contínuas.

A camada de entrada foi constituída de quantidade de neurônios igual ao nú-mero de variáveis explicativas do problema (os dados de input da rede). Logi-camente, a camada de saída apresenta apenas dois elementos, adimplência e inadimplência.

Várias redes com diferentes quantidades de neurônios na camada oculta fo-ram treinadas. O objetivo era encontrar as arquiteturas que apresentassem os melhores resultados. Nas tabelas 1,2 e 3 estão resumidas as redes que mais se adequaram aos dados em função do erro para cada grupo.

3 Resultados

Para cada uma das configurações abaixo, os resultados para cada par de con-juntos de treino e de teste, assim como a média e o desvio padrão dos 3 pares:

II. Sem normalização dos atributos de entrada.

III. Com normalização dos atributos de entrada e com 2 números diferentes de neurônios na camada escondida.

IV. Com normalização dos atributos de entrada e variando o número de épocas durante a fase de treinamento. 3 durações de treino diferentes: 10, 100 e 1000.

V. Com normalização dos atributos de entrada e utilizando um conjunto de va-lidação.

VI. Com normalização dos atributos de entrada e codificando binariamente os atributos de entrada.

VII. Agrupando algumas categorias das variáveis ESTC (0 se solteiro, viúvo ou divorciado e 1 se casado) e NDEP (0 se não possui dependentes e 1 se possui dependentes).

Tabela: Resultados Grupo I

II III IV V VI VII

Número de Épocas 500 500 500 10 100 1000 500 500 500

Hidden Layer 6 4 6 6 6 6 6 6 6

Class. Correta em % 53.03 89,95 89,25 90,81 90,29 89,43 89,60 89,60 88,21

Class. Incorreta em % 46.97 10,05 10,75 9,18 9,71 10,57 10,40 10,40 11,78

MAE % 49.59 14,52 14,26 16,65 15,17 13,98 15,59 14,26 14,86

RMSE % 50.05 28,73 29,27 28,83 28,33 29,37 28,47 29,24 30,40

RAE % 99.46 29,12 28,61 33,39 30,43 28,03 31,26 28,60 29,81

RRSE % 100.27 57,57 58,63 57,75 56,77 58,83 57,03 58,58 60,90

Tabela:

...

Baixar como (para membros premium)  txt (5 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com