Atps Equações Diferenciais
Artigo: Atps Equações Diferenciais. Pesquise 862.000+ trabalhos acadêmicosPor: pedro0001 • 21/3/2015 • 10.319 Palavras (42 Páginas) • 320 Visualizações
FACULDADE ANHANGUERA DE SÃO JOSÉ DOS CAMPOS
CURSO DE BACHARELADO EM ENGENHARIA ELÉTRICA
ENGENHARIA ELÉTRICA
4ª SÉRIE
EQUAÇÕES DIFERENCIAIS E SÉRIES
RESUMO
DESAFIO
O estudo sistemático de circuitos eletroeletrônicos atualmente é motivado para o desenvolvimento de novos dispositivos, como tablets, que trazem como uma das propostas permitir que o usuário tenha boa parte dos recursos de um computador em um aparelho portátil e mais leve que um notebook. O estudo de circuitos elétricos permite, também, o
avanço de dispositivos já existentes, a citar o exemplo de telefones celulares, cuja atual funcionalidade vai bem mais além da comunicação entre dois usuários por uma ligação telefônica.
.
ABSTRACT
CHALLENGE
The systematic study of electronic circuits is currently motivated to develop new devices such as tablets, as they bring one of the proposals to allow the user to have much of the resources of a computer into a portable, lighter device than a notebook. The study of electrical circuits, also allows the
advancement of existing devices, citing the example of cell phones, whose actual functionality goes well beyond the communication between two users via a phone call.
1. ETAPA 1
Passo 1:
Pesquisar e estudar sobre a modelagem de sistemas por meio de equações diferenciais em sistemas físicos e problemas de engenharia.
A modelagem matemática é a área do conhecimento que estuda a simulação de sistemas reais a fim de prever o comportamento dos mesmos, sendo empregada em diversos campos de es-tudo, como física, química, biologia, economia e engenharia. Modelagem matemática consiste na Arte de se descrever matematicamente um fenômeno.
A modelagem de um fenômeno via equações diferenciais, é normalmente feita da seguinte forma: através da simples observação conseguem-se informações sobre as taxas de variação do fenômeno (que do ponto de vista matemático são derivadas), escreve-se a equação que relaciona as taxas de variação e a função, isto é, a equação diferencial associada e, a partir da solução desta equação tem-se uma possível descrição do fenômeno.
Passo2:
Revisar os conteúdos sobre diferencial de uma função e sobre as técnicas de integração de funções de uma variável. Utilizar como bibliografia o Livro-Texto da disciplina (iden-tificado ao final da ATPS).
A integração é um processo que demanda certa habilidade e técnica, ele provê um meio indis-pensável para análises de cálculos diversos, além disso, o meio de integrar certas funções deve ser exercitado até que sejamos capazes de absorver a sua essência. O problema da integração deve ser visto como uma análise que pode conduzir a resultados algébricos diversos, quando tomadas técnicas diversas, que concordam, porém, em resultado numérico.
Método de conjecturar e verificar:
Uma boa estratégia para se encontrar primitivas simples é fazer uma conjectura de qual deve ser a resposta e depois verificar sua resposta derivando-a. Se obtivermos o resultado esperado, acabou. O método de conjecturar e verificar são útil na inversão da regra da cadeia.
Método por substituição:
Quando o integrado e complicado utilizamos essa técnica para formalizar o método de conje-turar e verificar da seguinte maneira
Dw = w´(x) dx = (dw/dx) dx
No método de substituição parece que tratamos dw e dx como entidades separadas, até cance-lando-as da equação dw= (dw/dx)dx.
Método por partes:
A técnica de integração por partes consiste da utilização do conceito de diferencial inversa aplicado à fórmula da regra da diferencial do produto.
Passo 3:
Estudar o método de resolução de equações diferenciais lineares de variáveis separáveis e de primeira ordem. Utilizar como bibliografia o Livro-Texto da disciplina (identificado ao final da ATPS).
Equações diferenciais lineares de variáveis separáveis:
A equação diferencial M(x,y).dx + N(x,y).dy = 0 será de variáveis separáveis se:
M e N forem funções de apenas uma variável ou constantes.
M e N forem produtos de fatores de uma só variável.
Isto é, se a equação diferencial puder ser colocada na forma P(x)dx + Q(y)dy = 0, a equação é chamada equação diferencial de variáveis separáveis.
Uma equação diferencial de variável separada é uma equação do tipo:
g(y) dy = f(x)dx
A solução geral da equação diferencial de variável separada obtém-se por primitivação de ambos os membros da equação, ou seja,
∫g(y)dy = ∫f(x)dx+C.
Chama-se equação de variáveis separáveis uma equação do tipo:
F1 (x)h1 (y)dx = f2(x)h2 (y)dy
Equações diferenciais lineares de 1ª ordem:
Chama-se equação diferencial linear de 1ª ordem a uma equação da forma
y'+P(x)y =Q(x) onde P e Q são funções contínuas de x num certo domínio D ⊂ IR.
É usual designar por equação completa aquela em que Q(x) ≠ 0 enquanto que a equação se chama homogênea, se Q(x)= 0
A resolução destas equações pode enquadrar-se da seguinte forma:
Se Q(x)= 0, a equação é de variáveis separáveis.
Se Q(x)≠0, a equação admite um fator integrante função só de x, I(x, y)= e ∫P(x) dx
Como resolver uma Equação diferencial linear de 1ª ordem:
Determinar o fator integrante I (x, y) = e ∫P(x) dx
Multiplicar
...