Conceito De Derivada E Regras De Derivação
Pesquisas Acadêmicas: Conceito De Derivada E Regras De Derivação. Pesquise 862.000+ trabalhos acadêmicosPor: kezio • 26/5/2013 • 317 Palavras (2 Páginas) • 853 Visualizações
Aula-tema: Conceito de Derivada e Regras de Derivação.
Passo 1
Pesquisar o conceito de velocidade instantânea a partir do limite, com ∆t→0.
Comparar a fórmula aplicada na física com a fórmula usada em cálculo e explicar o significado da função v (velocidade instantânea), a partir da função s (espaço), utilizando o conceito da derivada que você aprendeu em cálculo, mostrando que a função velocidade é a derivada da função espaço.
Dar um exemplo, mostrando a função velocidade como derivada da função do espaço, utilizando no seu exemplo a aceleração como sendo a somatória do último algarismo que compõe o RA dos alunos integrantes do grupo.
A velocidade instantânea é de modo simples, a velocidade que se obtém no momento em que se olha o velocímetro, mas fisicamente, velocidade instantânea é o limite da função da posição acrescida em sua variável. Tempo, uma variação muito pequena do tempo, ou seja, tendendo essa variação a zero, que nos leva ao conceito de derivada.
V=lim s(t+∆t)-s(t) V= ds
∆t=>0 ∆t dt
No cálculo, a integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas de problemas de Física, como por exemplo, na determinação da posição em todos os instantes de um objeto, se for conhecida a sua velocidade instantânea em todos os instantes.
Já observamos que o conceito de velocidade média está associado a dois instantes de tempo. Por exemplo, t1 e t2. E escrevemos v (t1,t2) para o módulo dessa velocidade média.
...