TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Estatística Aplicada

Exames: Estatística Aplicada. Pesquise 861.000+ trabalhos acadêmicos

Por:   •  7/5/2013  •  1.427 Palavras (6 Páginas)  •  970 Visualizações

Página 1 de 6

Estatística Aplicada

Questionário

1) Uma caixa contém 20 canetas iguais, das quais 7 são defeituosas, e outra caixa contém 12, das quais 4 são defeituosas. Uma caneta é retirada aleatoriamente de cada caixa. As probabilidades de que ambas não sejam defeituosas e de que uma seja perfeita e a outra não são respectivamente de:

a) 88,33% e 45,00%

b) 43,33% e 45,00%

c) 43,33% e 55,00%

d) 23,33% e 45,00%

e) 23,33% e 55,00%

Justificativa: A Resposta correta é a letra B.

Probabilidade de canetas boas da caixa A e canetas boas da caixa B =

P(canetas boas em A) = 13/20 = 0,65 ou 65%

P(canetas boas em B) = 08/12 = 0,66 ou 66,67%

0,65 x 0,66 = 0,43 x 100 = 43,33%

Ou seja, a probabilidade de que ambas não sejam defeituosas é de 43,33%.

No entanto, se a caneta defeituosa for retirada da caixa de 20 canetas e a caneta boa da caixa de 12, a probabilidade deste evento é a soma de ambos, ou seja, é de 45,00%.

2) Certo tipo de motor pode apresentar dois tipos de falhas: mancais presos e queima do induzido. Sabendo-se que as probabilidades de ocorrência dos defeitos são 0,2 e 0,03, respectivamente, determinar a probabilidade de que num motor daquele tipo, selecionado ao acaso, não ocorra, simultaneamente, as duas falhas.

a) 6%

b) 19,4%

c) 99,4%

d) 21,8%

e) 77,6%

Justificativa: A alternativa correta é a C.

Se a probabilidade de ocorrer mancais presos é de 0,2 e queima do induzido é de 0,03, determino que:

(0,2 * 0,03) + x = 1

x = 1 - 0,006

x = 0,994 = 99,4%

Tendo x como a probabilidade de não ocorrer as duas falhas simultaneamente.

3) Suponhamos que existam, num certo mercado, duas fábricas de lâmpadas. A fábrica "A" produz 500 lâmpadas, das quais 25% apresentam defeitos e a fábrica "B" produz 550 lâmpadas, das quais 26% são defeituosas; vamos supor também que as 1050 lâmpadas são vendidas por um único vendedor. Por fim suponhamos que um cliente vai comprar uma lâmpada sem especificar marca e que estas foram dispostas ao acaso na prateleira. Calcular:

I - A probabilidade de se receber uma lâmpada defeituosa.

II- A probabilidade de, tendo se recebido uma lâmpada perfeita, ela ser da marca "B".

A alternativa que apresenta as respostas corretas é a:

a) I = 47,62% e II = 26,00%

b) I = 26,00% e II = 52,05%

c) I = 25,52% e II = 26,00%

d) I = 25,50% e II = 50,00%

e) I = 25,52% e II = 52,05%

Justificativa: A alternativa correta é a E.

Fábrica A: Produção de 500 lâmpadas e 25% de peças defeituosas

Fábrica B: Produção de 550 lâmpadas e 26% de peças defeituosas

Resultando num total de 1050 lâmpadas

Calculando o tanto de lâmpadas defeituosas da fabrica A:

(Utilizando a fórmula em X)

500 - 100%

x - 25%

100x = 500*25

100x = 12500

X = 12500/100 = 125 lâmpadas

Calculando o tanto de lâmpadas defeituosas da fabrica B:

(Utilizando a fórmula em X)

550 -100%

Y - 26%

100y = 550*26

Y = 14300/100 = 143 lâmpadas

Se no total são 1050 lâmpadas boas, e a soma das peças defeituosas de ambas fábricas (125 de A + 143 de B), então temos:

(Utilizando a fórmula em X)

1050 -100%

268 - Z

1050z = 26800

Z = 26800/1050

Z = 25,52%

Ou seja, a probabilidade de se receber uma lâmpada defeituosa é de 25,52%.

Já, a probabilidade de, tendo se recebido uma lâmpada perfeita, ela ser da marca "B":

Lâmpadas Boas em A+B

(Total de lâmpadas - Total de lâmpadas defeituosas) =

1050 - 268 = 782 lâmpadas

Lâmpadas Boas em B

(Total de Lâmpadas em B - Lâmpadas defeituosas em B) =

550 - 143 = 407

(Utilizando a fórmula em X)

782 - 100%

407 - x

782x = 100 * 407

x = 52,05%

Então, a probabilidade de ser uma lâmpada boa e da marca B é de 52,05%.

4) Visando determinar a probabilidade de se encontrar fumantes numa determinada cidade fez-se uma pesquisa na qual se entrevistou 856 pessoas às quais se perguntou sobre ser fumante ou não. 327 destas pessoas admitiram serem fumantes. Podemos afirmar que, nesta cidade a probabilidade de se encontrar ao acaso uma pessoa não fumante é de:

a) 61,8%

b) 162%

c) 32,7%

...

Baixar como (para membros premium)  txt (9 Kb)  
Continuar por mais 5 páginas »
Disponível apenas no TrabalhosGratuitos.com