Matepatica Aplicada
Exames: Matepatica Aplicada. Pesquise 862.000+ trabalhos acadêmicosPor: feliperib3iro • 7/4/2014 • 367 Palavras (2 Páginas) • 176 Visualizações
1)
F(x) = x2
F(x) = 11
F(x) = 1
F(3) =92
F(3) = 81
tvm= Δy/Δx=(f(3)-f(1))/(3-1)= (9-1)/2=8/2=tmv=4
2)
F(x) =2x+1
F(2) =2²+1
F(2) =4+1
F(2) =5
F(5) =25+1
F(5) =32+1
F(5) =33
tvm= Δy/Δx=(f(x)-f(x))/(x-x)= (33-5)/(5-2)=28/3=tmv=9,33
3) A)
R = 5x2
R(4) =5.42
R(4) =5.16
R(4) =80
R= 5x2
R= (6) =5.62
R= (6) =5.36
R= (6) = 180
tvm= Δy/Δx=(f(x)-f(x°))/(x-x°)= (180-80)/(6-4)=100/2=tmv=50
B)
R= 5x2
R=(6) 5.62
R=(6) = 5.36
R=(6) = 160
R= 5x2
R(8) = 5.82
R(8) = 5.64
R(8) = 320
tvm= Δy/Δx=(f(x)-f(x°))/(x-x°)= (320-180)/(8-6)=140/2=tmv=70
4) A)
P(3) = 3x2
P(3) = 3.32
P(3) = 3.9
P(3) = 27
P(5) = 3.52
P(5) = 3.25
P(5) = 75
tvm= Δy/Δx=(P(x)-P(x)°)/(P-P)= (75-27)/(5-3)=48/2=tmv=24
B)
P(6) = 3.62
P(6) = 3.56
P(6) = 108
P(10) =3.102
P(10) =3.100
P(10) = 300
tvm= Δy/Δx=(p(x)-p(x)°)/(p-p°)= (300-108)/(10-6)=192/4=tmv=48
5)
C = q2 + 400
C(1) = 12 + 400
C(1) = 1 + 400
C(1) = 401
C(5) = 52 + 400
C(5) = 25 + 400
C(5) = 425
tvm= Δy/Δx=(f(x)-f(x)°)/(x-x°)= (425-401)/(5-1)=24/4=tmv=6
6)A)
tvm= Δy/Δx=(f(2)-f(0))/(2-1)= (2-0)/1=2/1=tmv=2
tvm= Δy/Δx=(f(10)-f(5))/(10-5)= (10-5)/5=5/5=tmv=1
B)
Para ambos intervalos as funções são crescentes.
C)
tvm= Δy/Δx=(f(x)-f(x))/(x-x)= (11-10)/(11-10)=1/1=tmv=1
7)
F(x) = 5x2
F(x) = 2.5x1
F(x) = 10.x1
F(2) = 10.2
F(2) = 10.2
F(2) = 20
8)
Y = 3x2 + 4x - 3
Y = 3.42 + 4.4 - 3
Y + 3.16 + 4.4 - 3
Y = 48 + 16 - 3
Y = 64 - 3
Y = 61
...