TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

PROBLEMAS MATEMÁTICOS

Exam: PROBLEMAS MATEMÁTICOS. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  20/3/2014  •  Exam  •  1.629 Palavras (7 Páginas)  •  274 Visualizações

Página 1 de 7

DESAFIOS DA MATEMÁTICA

01 - DESAFIOS

EU TENHO O DOBRO DA IDADE QUE TU TINHAS QUANDO EU TINHA A TUA IDADE. QUANDO TU TIVERES A MINHA IDADE, A SOMA DAS NOSSAS IDADES SERÁ DE 45 ANOS. QUAIS SÃO AS NOSSAS IDADES???

SOLUÇÃO

Tu TINHAS uma idade que chamaremos de x e hoje TEM uma idade que chamaremos de y.

Eu TENHO o dobro da idade que tu tinhas quando eu tinha a tua idade atual y (o dobro de x) , ou seja, eu TENHO 2x anos.

ENTÃO:

Tu TINHAS x e agora tem y.

Eu TINHA y e agora tenho 2x.

Portanto temos que:

y-x = 2x-y

2y=3x

x=(2/3)*y

ENTÃO, substituindo o valor de x, temos:

Tu TINHAS (2/3)*y e agora tem y.Eu TINHA y e agora tenho (4/3)*y.

Agora preste atenção na segunda frase:

QUANDO TU TIVERES A MINHA IDADE, A SOMA DAS NOSSAS IDADES SERÁ DE 45 ANOS.

Tu tem y, e para ter a minha idade, que é (4/3)*y, deve-se somar a tua idade y com mais (1/3)*y.

Somando y + (1/3)*y você terá a minha idade, ou seja, você terá (4/3)*y.

Como somamos (1/3)*y à sua idade, devemos somar à minha também, ou seja:

Agora eu tenho (4/3)*y + (1/3)*y, logo eu tenho (5/3)*y.

A soma de nossas idades deve ser igual a 45 anos:

(4/3)*y + (5/3)*y=45

(9/3)*y=45

3y=45

y=15

No início descobrimos que x=(2/3)*y, portanto x=(2/3)*15, logo x=10.

FINALMENTE: QUAIS SÃO AS NOSSAS IDADES???

COMO DISSEMOS NO INÍCIO, A TUA IDADE ATUAL É y, OU SEJA, 15 ANOS.

E A MINHA IDADE É 2x, OU SEJA, 2.10, QUE É IGUAL A 20 ANOS.

PORTANTO AS IDADES SÃO 20 E 15 ANOS!!!

02 - DESAFIOS

AS IDADES DE DUAS PESSOAS HÁ 8 ANOS ESTAVAM NA RAZÃO DE 8 PARA 11; AGORA ESTÃO NA RAZÃO DE 4 PARA 5. QUAL É A IDADE DA MAIS VELHA ATUALMENTE?

SOLUÇÃO

A solução é a seguinte:

Chamaremos de y a idade da pessoa mais nova.

Chamaremos de x a idade da pessoa mais velha.

O problema diz que agora (atualmente) as idades estão na razão de 4 para 5. Então:

y/x = 4/5 (equação 1)

O problema diz que há 8 anos as idades estavam na razão de 8 para 11. Então:

(y-8)/(x-8) = 8/11 (equação 2)

Isolando y na equação 1:

y = 4x/5

Colocando esse valor de y na equação 2 temos:

((4x/5)-8)/(x-8) = 8/11

(4x/5)-8 = 8/11.(x-8)

Fazendo o mmc dos dois lados temos:

(4x-40) / 5 = (8x-64) / 11

11.(4x-40) = 5.(8x-64)

44x-440 = 40x-320

44x-40x = 440-320

4x = 120

x= 30

Portanto a idade da pessoa mais velha é 30 anos!!!

03 - DESAFIOS

EXISTEM N TRIÂNGULOS DISTINTOS COM OS VÉRTICES NOS PONTOS DA FIGURA. QUAL É O VALOR DE N ?

SOLUÇÃO

Podemos notar que a figura é parecida com um "A".

Temos 13 pontos no total. Portanto o total de combinações entre eles é:

C13,3 = 286

Porém, nós queremos apenas as que formam triângulos, então temos que subtrair todas as combinações que não formam triângulos, ou seja, as combinações em que os pontos são COLINEARES. Temos 3 situações onde isso acontece:

Na "perna esquerda" do "A", temos 6 pontos colineares que não podem ser combinados entre si, pois não formam triângulos.

Na "perna direita" do "A", temos a mesma situação.

E no meio temos 4 pontos colineares que também não podem ser combinados entre si.

Temos que subtrair essa 3 situações do total. Então o número de triângulos que podem ser formados é:

C13,3 - C6,3 - C6,3 - C4,3 = 286 - 20 - 20 - 4 = 242

Portanto podem ser formados 242 triângulos distintos!!!

04 - DESAFIO

UM HOMEM GASTOU TUDO O QUE TINHA NO BOLSO EM TRÊS LOJAS. EM CADA UMA GASTOU 1 REAL A MAIS DO QUE A METADE DO QUE TINHA AO ENTRAR. QUANTO O HOMEM TINHA AO ENTRAR NA PRIMEIRA LOJA?

SOLUÇÃO

Vamos considerar que quando o homem entrou na primeira loja ele tinha N reais. Então o nosso objetivo é achar o valor de N.

O problema diz que em cada loja o homem gastou 1 real a mais do que a metade do que tinha ao entrar.

...

Baixar como (para membros premium)  txt (9.9 Kb)  
Continuar por mais 6 páginas »
Disponível apenas no TrabalhosGratuitos.com