Resistencia Dos Materiais
Monografias: Resistencia Dos Materiais. Pesquise 862.000+ trabalhos acadêmicosPor: jeffcampestrini • 7/10/2014 • 239 Palavras (1 Páginas) • 239 Visualizações
Problem 1-1
Determine the resultant internal normal force acting on the cross section through point A in each
column. In (a), segment BC weighs 300 kg/m and segment CD weighs 400kg/m. In (b), the column
has a mass of 200 kg/m.
(a) Given: g 9.81
m
s2
:= wBC 300
kg
m
:=
LBC := 3m wCA 400
kg
m
:=
FB := 5kN LCA := 1.2m
FC := 3kN
Solution:
+↑Σ Fy = 0; FA wBC g − ( ⋅ )⋅LBC − (wCA⋅g)⋅LCA − FB − 2FC = 0
FA := (wBC⋅g)⋅LBC + (wCA⋅g)⋅LCA + FB + 2FC
FA = 24.5 kN Ans
(b) Given: g 9.81
m
s2
:= w 200
kg
m
:=
L := 3m F1 := 6kN
FB := 8kN F2 := 4.5kN
Solution:
+↑Σ Fy = 0; FA w L − ( ⋅ )⋅g − FB − 2F1 − 2F2 = 0
FA := (w⋅L)⋅g + FB + 2F1 + 2F2
FA = 34.89 kN Ans
Problem 1-2
Determine the resultant internal torque acting on the cross sections through points C and D of the
shaft. The shaft is fixed at B.
Given: TA := 250N⋅m
TCD := 400N⋅m
TDB := 300N⋅m
Solution:
Equations of equilibrium:
+ TA − TC = 0
TC := TA
TC = 250N⋅m Ans
+ TA − TCD + TD = 0
TD := TCD − TA
TD = 150N⋅m Ans
Problem 1-3
Determine the resultant internal torque acting on the cross sections through points B and C.
Given: TD := 500N⋅m
TBC := 350N⋅m
TAB := 600N⋅m
Solution:
Equations of equilibrium:
Σ Mx = 0; TB + TBC − TD = 0
TB := −TBC + TD
TB = 150N⋅m Ans
Σ Mx = 0; TC −
...