Principais Conflitos Atuais
Exames: Principais Conflitos Atuais. Pesquise 862.000+ trabalhos acadêmicosPor: amanda.resende • 9/4/2014 • 4.487 Palavras (18 Páginas) • 512 Visualizações
Funções definições e tipos;
Relações métricas no triângulo;
Retângulo;
Funções trigonométricas;
(Seno, cosseno, tangente)
Juros simples e compostos.
Colégio estadual Presidente Dutra.
Nome:Amanda Resende
Turma:3003
Trabalho de dependência de matemática do 1º ano
Funções definições e tipos;
Função é uma lei ou regra que associa cada elemento de um conjunto A à um único elemento de um conjunto B. O conjunto A é chamado de domínio da função, enquanto que o conjunto B é denominado de contradomínio da função.
Com essa definição podemos dizer que função é um tipo de dependência, um valor depende do outro, matematicamente podemos dizer que função é uma relação de dois valores, por exemplo: f(x) = y, sendo que x e ysão valores, onde x é o domínio da função (a função está dependendo dele) e y é um valor que depende do valor de x sendo a imagem da função.
Ao abastecer o veículo no posto de combustíveis, o valor a ser pago depende da quantidade de litros colocados no tanque. Dessa forma, observamos que o preço a ser pado está em função da quantidade de litros, sendo, portanto, um exemplo de função presente no cotidiano.
Vamos através de diagramas de flechas demonstrar esses três elementos pertencentes ao estudo das funções.
Os elementos do conjunto A serão relacionados com os elementos do conjunto B através de uma lei de formação. Observe:
O conjunto A é formado pelos elementos {–1, 0, 2, 3, 4} e o conjunto B pelos elementos {–1, 0, 1, 5, 6, 7, 8, 9}. Observe que os elementos do conjunto A se relacionam com os elementos de B segundo a função de A → B (função de A em B) pela lei de formação f(x) = 2x + 1. Observe:
f(–1) = 2 * (–1) + 1 = –2 + 1 = –1
f(0) = 2 * 0 + 1 = 0 + 1 = 1
f(2) = 2 * 2 + 1 = 4 + 1 = 5
f(3) = 2 * 3 + 1 = 6 + 1 = 7
f(4) = 2 * 4 + 1 = 8 + 1 = 9
Nessa relação, temos que o domínio é dado pelo conjunto A, o contradomínio representado pelo conjunto B e a imagem pelos elementos de B que possuem relação com os elementos do conjunto A.
Domínio: {–1, 0, 2, 3, 4}
Contradomínio: {–1, 0, 1, 5, 6, 7, 8, 9}
Imagem: {–1, 1, 5, 7, 9}
Na seguinte situação, relacionaremos o conjunto A com o conjunto B, obedecendo a uma nova lei de formação, dada por f(x) = x² – 2. Observe os cálculos que determinarão o conjunto imagem dos elementos de A.
f(–1) = (–1)² – 2 = 1 – 2 = –1
f(0) = 0² – 2 = 0 – 2 = –2
f(2) = 2² – 2 = 4 – 2 = 2
f(3) = 3² – 2 = 9 – 2 = 7
f(4) = 4² – 2 = 16 – 2 = 14
Domínio: {–1, 0, 2, 3, 4}
Contradomínio: {–2, –1, 2, 7, 14}
Imagem: {–2, –1, 2, 7, 14}
Em algumas situações o contradomínio e a imagem são iguais, isto é, possuem os mesmos elementos.
Na seguinte relação, a lei de formação será dada por f(x) = x³, o conjunto A será formado pelos elementos {–2, –1, 0, 1, 2, 3}. Vamos determinar o conjunto B imagem desse domínio representado pelo conjunto A.
f(–2) = (–2)³ = –8
f(–1) = (–1)³ = –1
f(0) = 0³ = 0
f(1) = 1³ = 1
f(2) = 2³ = 8
f(3) = 3³ = 27
Domínio: {–2, –1, 0, 1, 2, 3}
Contradomínio: {–8, –1, 0, 1, 8, 27}
Imagem: {–8, –1, 0, 1, 8, 27}
-
Exemplo 1:
O preço do litro da gasolina em um posto é R$ 2,50.
Litros Valor a pagar
1 R$ 2,50
2 R$ 5,00
3 R$ 7,50
4 R$ 10,00
5 R$ 12,50
10 R$ 25,00
15 R$ 37,50
20 R$ 50,00
……….. ……………
O total a pagar depende da quantidade de gasolina abastecida. Podemos estabelecer uma relação entre a quantidade de litros de gasolina e o valor a ser pago:
f(x): preço a pagar (varia de acordo com a quantidade de litros abastecidos)
x: litros (variável)
y: preço do litro (valor pré-fixado)
Temos que a lei de formação da função é: f(x) = 2,50x
Exemplo 2:
Um taxista cobra um valor fixo de R$ 4,20 mais R$ 0,30 por quilômetro rodado. Escreva a função que determina o valor de uma corrida e qual o valor que uma pessoa irá pagar por ter usado os serviços do taxista após rodar 20 km.
Função: f(x) = 0,30x + 4,20 (onde x: km rodados e R$ 4,20 valor fixo)
f(x) = 0,30x + 4,20
f(20) = 0,30 * 20 + 4,20
f(20) = 6 + 4,20
f(20) = 10,20
A pessoa irá
...