A HISTÓRIA DA GEOMETRIA
Tese: A HISTÓRIA DA GEOMETRIA. Pesquise 862.000+ trabalhos acadêmicosPor: siderado • 13/3/2014 • Tese • 873 Palavras (4 Páginas) • 413 Visualizações
HISTÓRIA DA GEOMETRIA
Uma estranha construção feita pelos antigos persas para estudar o movimento dos astros. Um compasso antigo. Um vetusto esquadro e, sob ele, a demonstração figurada do teorema de Pitágoras. Um papiro com desenhos geométricos e o busto do grande Euclides. São etapas fundamentais no desenvolvimento da Geometria. Mas, muito antes da compilação dos conhecimentos existentes, os homens criavam, ao sabor da experiência, as bases da Geometria. E realizavam operações mentais que depois seriam concretizadas nas figuras geométricas.
Uma medida para a vida
As origens da Geometria (do grego medir a terra) parecem coincidir com as necessidades do dia-a-dia. Partilhar terras férteis às margens dos rios, construir casas, observar e prever os movimentos dos astros, são algumas das muitas atividades humanas que sempre dependeram de operações geométricas. Documentos sobre as antigas civilizações egípcia e babilônica comprovam bons conhecimentos do assunto, geralmente ligados à astrologia. Na Grécia, porém, é que o gênio de grandes matemáticos lhes deu forma definitiva. Dos gregos anteriores a Euclides, Arquimedes e Apolônio, consta apenas o fragmento de um trabalho de Hipócrates. E o resumo feito por Proclo ao comentar os "Elementos" de Euclides, obra que data do século V a.C., refere-se a Tales de Mileto como o introdutor da Geometria na Grécia, por importação do Egito.
Pitágoras deu nome a um importante teorema sobre o triângulo-retângulo, que inaugurou um novo conceito de demonstração matemática. Mas enquanto a escola pitagórica do século VI a.C. constituía uma espécie de seita filosófica, que envolvia em mistério seus conhecimentos, os "Elementos" de Euclides representam a introdução de um método consistente que contribui há mais de vinte séculos para o progresso das ciências. Trata-se do sistema axiomático, que parte dos conceitos e proposições admitidos sem demonstração (postulados o axiomas) para construir de maneira lógica tudo o mais. Assim, três conceitos fundamentais - o ponto, a reta e o círculo - e cinco postulados a eles referentes servem de base para toda Geometria chamada euclidiana, útil até hoje, apesar da existência de geometrias não-euclidianas baseadas em postulados diferentes (e contraditórios) dos de Euclides.
O corpo como unidade
As primeiras unidades de medida referiam-se direta ou indiretamente ao corpo humano: palmo, pé, passo, braça, cúbito. Por volta de 3500 a.C. - quando na Mesopotâmia e no Egito começaram a ser construídos os primeiros templos - seus projetistas tiveram de encontrar unidades mais uniformes e precisas. Adotaram a longitude das partes do corpo de um único homem (geralmente o rei) e com essas medidas construíram réguas de madeira e metal, ou cordas com nós, que foram as primeiras medidas oficiais de comprimento.
Ângulos e figuras
Tanto entre os sumérios como entre os egípcios, os campos primitivos tinham forma retangular. Também os edifícios possuíam plantas regulares, o que obrigava os arquitetos a construírem muitos ângulos retos (de 90º). Embora de bagagem intelectual reduzida, aqueles homens já resolviam o problema como um desenhista de hoje. Por meio de duas estacas cravadas na terra assinalavam um segmento de reta. Em seguida prendiam e esticavam cordas que funcionavam à maneira de compassos: dois arcos de circunferência se cortam e determinam dois pontos que, unidos, secionam perpendicularmente a outra reta, formando os ângulos retos.
...