TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

TOPOGRAFIA

Trabalho Universitário: TOPOGRAFIA. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  20/3/2015  •  591 Palavras (3 Páginas)  •  329 Visualizações

Página 1 de 3

Por outro lado, concluímos que o módulo da velocidade média entre esses instantes de tempo pode ser obtido a partir do segmento de reta secante ao gráfico da posição em função do tempo. Esse segmento de reta deve ligar os pontos A e B do gráfico, pontos estes que correspondem aos instantes de tempo t1 e t2 .

Exemplo: Função x = 4.x t²+ + t3 + 7t – 8

Velocidade no tempo 3s

V=d.x 8.x+3c+7

d.t

V=8.3+3.3²+7

V= 58 m/s

Aceleração no tempo 2s

V=d.x 8.x+3t²+7

d.t

a=d.v 8+6.t

d.t

a= 8+6.t

a=8+6 .2

a=20 m/s²

Passo 2

Montar uma tabela, usando seu exemplo acima, com os cálculos e plotenum gráfico as funções S(m) x t(s) e V(m/s) x t(s) para um intervalo entre 0 a 5s, diga que tipo de função você tem e calcular a variação do espaço percorrido e a variação de velocidade para o intervalo dado.

Calcular a área formada pela função da velocidade, para o intervalo dado acima.

Gráfico s(m) x t(s) x = 4.x t²+ + t3 + 7t – 8

Gráfico v(m) x t(s) v = 8x+3t²+7

Passo 3

Pesquisar sobre a aceleração instantânea de um corpo móvel, que define a aceleração como sendo a derivada da função velocidade.

Explicar o significado da aceleração instantânea a partir da função s (espaço), mostrando que é a aceleração é a derivada segunda.

Utilizar o exemplo do Passo 1 e mostrar quem é a sua aceleração a partir do conceito de derivação aplicada a sua função espaço e função velocidade.

Aceleração instantânea da partícula no instante t é o limite dessa razão quando Δt tende a zero. Representando a aceleração instantânea por ax, temos então:

A aceleração de uma partícula em qualquer instante é a taxa na qual sua velocidade está alterando naquele instante. A aceleração instantânea é a derivada da velocidade em relação ao tempo: a = dv dt. Vamos derivar a equação da velocidade instantânea para obter a aceleração instantânea. Função da velocidade em um determinado instante.

V=V0¹-¹ + a*t¹-¹

V=1*V0¹-¹ + 1*a*t¹-¹

a=a

Podemos observar que a derivada da velocidade instantânea resulta direto na aceleração.

Passo 4

Plotar num gráfico sua função a(m/s2) x t(s) para um intervalo de 0 a 5 segundos

...

Baixar como (para membros premium)  txt (3.9 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com