Integração por substituição. Integração das Partes
Seminário: Integração por substituição. Integração das Partes. Pesquise 862.000+ trabalhos acadêmicosPor: everton33 • 16/10/2014 • Seminário • 1.629 Palavras (7 Páginas) • 216 Visualizações
AtPS
ETAPA 2
Aula-tema: Integração por Substituição. Integração por Partes.
Esta etapa é importante para você fixe, de forma prática, a técnica de integração por
substituição e por partes, desenvolvida previamente em sala de aula pelo professor da
disciplina. Você também irá aprender a resolver vários tipos de integrais com suas
respectivas peculiaridades.
Para realizá-la, devem ser seguidos os passos descritos.
PASSOS
Passo 1 (Equipe)
Façam as atividades apresentadas a seguir.
1. Leiam atentamente o capítulo do livro-texto que descreve os conceitos de integração por partes e por substituição. Pesquisem também em: livros didáticos do Ensino Superior, na Internet e em outras fontes de livre escolha, informações ligadas ao estudo e utilização das técnicas de integração por partes e por substituição.
2. Façam um levantamento sobre a história do surgimento das técnicas de integração trabalhadas nesta etapa e elaborem um texto dissertativo, contendo as principais informações encontradas com a pesquisa realizada no passo 1. Essa pesquisa será imprescindível para a compreensão e realização dos próximos passos.
R: A utilização desta fórmula para melhorar o processo de integração implica na necessidade de uma breve explanação, o processo consiste em observar a função a ser integrada como sendo uma integral , ou seja, devemos separar a função em duas partes: uma, chamamos de u, que consideraremos função primitiva e outra dv que será uma diferencial, desta forma, faremos aintegração da parte dv para encontrar v e depois subtrairemos a integral da mesma com relação a diferencial de u: du. Parece um tanto incomum a princípio, porém após o hábito no uso da técnica, esta se torna muito útil.
Outro fato deve ser explorado: como o processo demanda a integração da diferencial dv nos vem a questão sobre a necessidade de utilização da constante de antidiferenciação C, portanto façamos a verificação da fórmula utilizando-a:
Se ,
Ou seja, a constante é dispensável para o cálculo da integral que resulta em v.
Considere a seguinte integral:
A substituição consiste simplesmente em aplicar uma mudança de variáveis , onde é uma função qualquer contínua no domínio de integração. Fazendo :
Esta técnica, que é fruto da regra da cadeia para derivadas, é muito útil quando a função a ser integrada pode ser representada como um produto de funções, onde uma é derivada da outra (podendo diferir de uma constante).
Nem sempre a substituição adequada é evidente; muitas vezes é necessário fazer substituições pouco intuitivas (tais como substituição através de funções trigonométricas). Para tal, são necessários prática e alto poder de carteação.
Passo 2 (Equipe)
Considerem as seguintes igualdades:
1 dt = + c
Resolução:
u =
= 2t- 6
+ c
+ c
+ c
2 dt = 4,67
Resolução:
T= u-4
U= t+4
=1
* =
-
Podemos afirmar que:
a (I) e (II) são verdadeiras
Passo 3 (Equipe)
Marquem a resposta correta dodesafio proposto no passo 2, justificando, por meio dos cálculos realizados, os valores lógicos atribuídos.
Para o desafio:
Associem o número 4, se a resposta correta for a alternativa (a).
ETAPA 3
Aula-tema: Cálculo de Área.
Esta etapa é importante para você fixe, de forma prática, como se dá o cálculo de área, usando a teoria de integrais para tanto.
Para realizá-la, devem ser seguidos os passos descritos.
PASSOS
Passo 1 (Equipe)
Façam as atividades apresentadas a seguir.
1. Leiam atentamente o capítulo do livro-texto que descreve os conceitos de cálculo de área, usando teoria de integrais para isso. Pesquisem também em: livros didáticos, na Internet e em outras fontes de livre escolha, informações ligadas ao estudo e utilização das técnicas de integração na resolução de exercícios que envolvam área obtida por duas ou mais curvas.
2. Façam um levantamento sobre a história do surgimento das desta forma de calcular área gerada por duas ou mais curvas e elaborem um texto dissertativo, contendo as principais informações encontradas com a pesquisa realizada no passo 1. Essa pesquisa será imprescindível para a compreensão e realização dos próximos passos.
R: Consideremos o caso da função:
Os valores do seno entre e são positivos e entre e são negativos! Isto causa uma situação interessante, uma vez que as áreas entre a curva e o eixo dos dois intervalos, quando observadas no plano cartesiano, são identicas, a área das duas deveria ser o dobro de uma delas, entretanto a integral calculada no intervalo entre e é nula! Esta é a razão pela qual devemos fazer o módulo das integrais em cada intevalo de mudança de sinal, para que os valores das áreas nestes intervalos não se subtraiam, provocando erro no cálculo.
Devemos
...