VALIDAÇÃO DE METODOLOGIA PARA A CARACTERIZAÇÃO QUÍMICA DE BAGAÇO DE CANA-DE-AÇÚCAR
Pesquisas Acadêmicas: VALIDAÇÃO DE METODOLOGIA PARA A CARACTERIZAÇÃO QUÍMICA DE BAGAÇO DE CANA-DE-AÇÚCAR. Pesquise 862.000+ trabalhos acadêmicosPor: • 12/12/2014 • 1.570 Palavras (7 Páginas) • 436 Visualizações
INTRODUÇÃO
Materiais lignocelulósicos na forma de biomassa de plantas, como o bagaço de cana-de-açúcar, são os mais abundantes complexos orgânicos de carbono e são constituídos, principalmente, de três componentes: celulose, hemicelulose e lignina.1 O bagaço de cana-de-açúcar, para a maior parte dos países tropicais, é um dos principais materiais lignocelulósicos utilizados para a bioconversão em etanol, já que estes materiais apresentam alta concentração de carboidratos, baixo conteúdo relativo de lignina, fácil utilização, baixo custo de colheita, transporte e armazenagem.2
A metodologia utilizada para a determinação da composição química do material é de extrema importância em estudos de valorização de materiais lignocelulósicos. Em particular, o desenvolvimento de processos para a produção de etanol a partir da biomassa da cana-de-açúcar envolve a otimização, de forma integrada, de diversas etapas: pré-tratamento, hidrólise e fermentação dos hidrolisados. Para a avaliação da eficiência de diferentes processos alternativos, é fundamental uma caracterização precisa da composição química da biomassa durante a sua conversão nas diferentes etapas envolvidas.
Para a caracterização química de lignocelulósicos geralmente é utilizada uma hidrólise ácida com ácido sulfúrico. Assim, ocorre uma despolimerização do polissacarídeo, formando oligômeros e seus açúcares constituintes, isto é, suas unidades repetitivas. No caso da hemicelulose, as maiores frações são de xilose, ácido acético e furfural. Já para a celulose, são formados glicose e hidroximetilfurfural (HMF) que, por sua vez, pode ser convertido a ácido fórmico.3
O objetivo deste trabalho foi a validação da metodologia para a caracterização química de bagaço de cana-de-açúcar, quanto aos teores de celulose, hemicelulose e lignina. A metodologia analítica aqui avaliada foi descrita por Rocha et al.4 e tem sido utilizada rotineiramente nos laboratórios do Departamento de Biotecnologia da Escola de Engenharia de Lorena (EEL/USP) para análises de gramíneas, tais como bagaço e palha de cana-de-açúcar. No presente trabalho, esta metodologia foi validada, através da análise de resultados de caracterização de uma mesma amostra de bagaço obtidos por 2 laboratórios: pelo Departamento de Biotecnologia da EEL e pelo Laboratório de Processos Biotecnológicos do Departamento de Antibióticos da UFPE. Ambos os laboratórios participam da Rede Bioetanol (rede nacional financiada pela Financiadora de Estudos e Projetos - FINEP/MCT), cujo objetivo é o desenvolvimento de um processo de produção de etanol a partir da biomassa da cana-de-açúcar. A validação desta metodologia garante a qualidade dos resultados obtidos pelos diversos grupos que compõem esta rede.
PARTE EXPERIMENTAL
Material
Para a validação da metodologia, foi utilizada uma amostra de bagaço de cana-de-açúcar, pré-tratado na Usina Vale do Rosário (SP), através de explosão a vapor. A amostra foi caracterizada no Laboratório B (EEL/USP) e no Laboratório A (Departamento de Antibióticos/UFPE) para comparação dos resultados.
O efeito do tratamento por explosão a vapor sobre a organização estrutural da celulose aumenta consideravelmente sua área superficial e, por conseguinte, sua susceptibilidade à hidrólise ácida e/ou enzimática. Por esta razão, este método de pré-tratamento tem sido proposto para a conversão de biomassa lignocelulósica a etanol.5
O pré-tratamento do bagaço, com uma umidade de aproximadamente 50%, foi realizado em reator de 5000 L a uma pressão de 15,3 kgf/cm2 (equivalente a 200 oC – pressão de vapor d’água), durante 7 min. A completa abertura da válvula da base do reator se deu em 15 s e o material pré-tratado foi transferido para um ciclone por diferença de pressão. O material foi lavado exaustivamente até a total remoção dos açúcares hidrolisados e, em seguida, foi seco à temperatura ambiente e armazenado.
Hidrólise do bagaço de cana-de-açúcar com ácido sulfúrico
Amostras de 2 g (moídas a 20 mesh em moinho Wiley) de bagaço pré-tratado, pesadas com precisão de 0,1 mg foram transferidas para béqueres de 100 mL e tratadas com 10 mL de H2SO4 72% v/v, sob vigorosa agitação, em um banho termostatizado (Fisatom) a 45 °C por 7 min. As amostras foram transferidas quantitativamente para frascos erlenmeyers de 500 mL, adicionando-se o volume de 275 mL de água
Validação de metodologia para a caracterização química
1501
Vol. 32, No. 6
destilada. Os erlenmeyers foram fechados com papel alumínio e autoclavados por 30 min a 121°C. Após a descompressão da autoclave, os frascos foram retirados e resfriados à temperatura ambiente, sendo a fração sólida separada da fração líquida por filtração em papel de filtro qualitativo. A fração líquida foi transferida para balão volumétrico de 500 mL, o qual teve o seu volume posteriormente completado com água destilada. A solução foi armazenada para análises posteriores de carboidratos, ácidos orgânicos, furfural, HMF e lignina solúvel.
Determinação de lignina insolúvel na fração sólida
Lignina insolúvel foi determinada de acordo com o método Klasson modificado por Rocha et al..4 O material retido no papel de filtro foi lavado com 1500 mL de água destilada, transferido para pesa-filtros para secagem em estufa a 100 °C até massa constante. A percentagem de lignina insolúvel foi calculada em relação à massa de amostra seca conforme a Equação 1: (1)
onde: LKi – Lignina Klason insolúvel; Mk – massa de lignina insolúvel seca; MC – massa de cinzas; MA – massa da amostra seca.
Determinação de lignina solúvel na fração líquida
A quantidade de lignina solúvel foi determinada pela medida de absorvância a 280 nm em espectrofotômetro. O cálculo da lignina solúvel foi determinado conforme a Equação 2.4
Clig = 4,187*10-2(AT-Apd)-3,279*10-4 (2)
onde: Clig - concentração de lignina solúvel, em g/L; AT - absorvância da solução de lignina junto com os produtos de degradação, em 280 nm; Apd = c1 ε1 + c2 ε2 – absorvância, em 280 nm, dos produtos de decomposição dos açúcares (furfural e HMF), cujas concentrações c1 e c2 foram determinadas previamente por CLAE (cromatografia líquida de alta eficiência) e ε1 e ε2 são as absortividades e valem, respectivamente, 146,85 e 114,00 L g-1 cm-1.
Determinação de carboidratos, ácidos orgânicos, furfural e hidroximetilfurfural na fração líquida
Antes da determinação de carboidratos e de ácidos orgânicos por cromatografia líquida de alta eficiência, o hidrolisado foi aplicado em cartuchos de extração em fase sólida Sep-Pak C18 (Phenomenex). Para a construção das curvas de calibração dos carboidratos, foram injetadas no cromatógrafo líquido, soluções contendo celobiose, glicose, xilose e arabinose. A construção das curvas de calibração dos ácidos orgânicos foi realizada através da injeção de soluções contendo ácido acético e ácido fórmico. As condições das análises no Laboratório A, foram: coluna Phenomenex Rezex ROA-Organic Acid H+ (8%); fase móvel: H2SO4 0,005 mol L-1; fluxo de 0,6 mL min-1; temperatura do forno: 45 ºC e detector de índice de refração em cromatógrafo líquido da Agilent (modelo 1100). Nas análises de carboidratos e ácidos orgânicos, realizadas no Laboratório B, foi utilizada uma coluna Aminex HPX 87H (300 x 7,8 mm, Bio-Rad) e um cromatógrafo da Shimadzu (modelo CR 7), empregando um detector de índice de refração Shimadzu modelo RDI-6, sendo a fase móvel, o fluxo e a temperatura iguais àquelas utilizadas no Laboratório A.
Da mesma forma, para a construção das curvas de calibração de furfural e de hidroximetilfurfural, foram injetadas soluções contendo estes dois compostos. Nas análises de furfural e de hidroximetilfurfural, uma amostra do hidrolisado foi filtrado em membrana de 0,45 μm. As condições das análises no Laboratório A, foram: coluna C-18 (Beckman); fase móvel: solução de acetonitrila/água 1:8 com 1% de ácido acético; fluxo de 0,8 mL min-1; detector UV/VIS a 274 nm; temperatura do forno a 25 ºC, em cromatógrafo líquido Agilent (modelo 1100). Nas análises de carboidratos e ácidos orgânicos, realizadas no Laboratório B, foi utilizada coluna C-18 (Hewlett-Packard) em cromatógrafo Shimadzu modelo CR 7A com detector de UV visível marca Shimadzu modelo SPD-10, sendo a fase móvel, o fluxo e a temperatura também iguais àquelas utilizadas no Laboratório A.
Determinação de cinzas
Após a determinação da lignina insolúvel em meio ácido, a mesma, juntamente com o papel de filtro, foi transferida para um cadinho de porcelana, previamente tarado. A amostra foi calcinada lentamente até 300 °C e mais 2 h a 800 °C, em uma mufla (Fornitec modelo MDS 15X15X30). Na determinação das cinzas totais, pesaram-se aproximadamente 2 g do bagaço em cadinho de porcelana previamente tarado. Por diferença de massa, o teor de cinzas da lignina insolúvel e das cinzas totais foi determinado conforme a Equação 3. (3)
onde: % cinzas – percentual em massa de cinzas; Mc – massa de cinzas (diferença entre a massa do cadinho com cinzas e a massa do cadinho vazio); Ma – massa da amostra base seca.
Validação do método de caracterização
A validação do método de caracterização foi obtida pela determinação dos parâmetros: linearidade, repetibilidade, reprodutibilidade e exatidão, utilizando os Programas Microsoft Office Excel 2007 e Microcal Origin 6.0. A análise da variância também foi realizada utilizando estes programas.
RESULTADOS E DISCUSSÃO
Linearidade
A linearidade é a resposta obtida em função da concentração do analito (produto comercial), a qual deve ser estudada em um intervalo de concentração apropriado.6 A faixa linear de detecção que obedece a Lei de Beer depende do composto analisado e do tipo de detector utilizado. A linearidade foi determinada pelo coeficiente de correlação (R), obtido pelo gráfico relacionado à resposta do equipamento (detector UV/VIS ou Índice de Refração) em função de várias concentrações dos analitos. A faixa linear para cada analito, em ambos laboratórios, foi: 0,0306-0,306 g/L (celobiose); 0,1621-1,621 g/L (glicose); 0,0622-0,622 g/L (xilose); 0,0316-0,316 g/L (arabinose); 0,0293-0,293 g/L (ácido fórmico); 0,0286-0,286 g/L (ácido acético); 0-1 g/L (furfural); 0-0,8 g/L (hidroximetilfurfural) O número mínimo de pontos geralmente aceito nos gráficos de calibração varia entre 5 e 6 pontos.6 Neste trabalho foram utilizados 5 pontos. Os coeficientes para cada equação da reta (Área = a C + b; C – concentração), obtidas em ambos laboratórios, são apresentados na Tabela 1. Em ambos laboratórios foram obtidas adequadas linearidades, com coeficientes de correlação maiores que 0,995.7
...