TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Colisões unidimensionais

Projeto de pesquisa: Colisões unidimensionais. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  10/10/2014  •  Projeto de pesquisa  •  1.695 Palavras (7 Páginas)  •  1.077 Visualizações

Página 1 de 7

Professora:

Luiza Toshie Bomura

Santa Bárbara D'Oeste, 19 de Abril de 2013.

Colisões Unidimensionais

Resumo:

Colisões unidimensionais podem ser consideradas como um sistema isolado, ou seja, durante o curto tempo de colisão, quaisquer forças externas sobre os dois corpos são, usualmente, muito mais fracas do que as forças de interação entre eles, resultando em uma conservação da quantidade de movimento dos corpos antes e após o choque. O presente trabalho teve como objetivo a análise das características de um choque mecânico e sua classificação. A colisão unidimensional foi realizada em duplicata, sendo a primeira não considerando as massas das esferas e na segunda sim, e calculado o coeficiente de restituição para classificar o choque. Os principais resultados foram: Em ambos os experimentos o coeficiente de restituição foi 0 < ε < 1, sendo característico de um choque perfeitamente elástico. Estes resultados mostram que houve erros durante a execução dos experimentos como visual.

1. Introdução

Em uma colisão a força exercida sobre um corpo é de curta direção, tem um módulo elevado e muda bruscamente o momento do corpo.

Colisão simples: Suponha que o projétil seja uma bola e o alvo um taco. A colisão dura pouco tempo, mas a força que age sobre a bola é suficiente para inverter o movimento. A bola sofre uma força que varia durante a colisão e muda o momento linear da bola. Esta variação esta relacionada à força através da segunda lei de Newton, escrita na forma F=dp/dt. Assim integrando esta equação de ambos os lados, o lado esquerdo nos dá a variação do momento e o lado direito, que é uma medida tanto da intensidade quanto da duração da força da colisão, é chamada impulso da colisão. Logo, a variação do momento de um objeto é igual ao impulso exercido sobre o objeto.

Suponha que a força externa resultante Fres (e, portanto, o impulso) que age sobre um sistema de partículas seja zero (o sistema seja isolado) e que nenhuma partícula entre ou saia do sistema (o sistema seja fechado). Fazendo Fres=O, portanto, o momento linear é constante, ou seja, se um sistema de partículas não está submetido a nenhuma força externa, o momento linear total do sistema não pode variar e também se uma das componentes da força externa aplicada a um sistema fechado é nula, a componente do momento linear do sistema em relação ao mesmo não pode variar. Note que estamos falando das forças externas que agem sobre um sistema fechado. Embora forças internas possam mudar o momento linear de partes do sistema, não podem mudar o momento linear total do sistema.

Agora vamos considerar um sistema como um todo, supondo que é um sistema fechado e isolado. O momento linear não pode variar porque não há uma força externa para causar essa variação. Esta é uma regra muito importante, pois permite determinar o resultado de uma colisão sem conhecer detalhes da colisão (como a extensão dos dados). E também vamos considerar a energia cinética total do sistema de dois corpos que colidem, se a energia cinética total não é alterada pela colisão. A energia cinética do sistema é conservada (é a mesma antes e depois da colisão), este tipo de colisão é chamado de colisão elástica. Nas colisões entre corpos comuns, que acontecem no dia-a-dia, como as colisões entre dois carros ou entre uma bola e um taco, parte da energia é sempre transferida de energia cinética para outras formas de energia, como a energia térmica e a energia sonora. Este tipo de colisão é chamado de colisão inelástica. Em algumas situações, entretanto, podemos considerar uma colisão de corpos comuns como sendo aproximadamente elástica. A colisão inelástica de dois corpos sempre envolve uma perda de energia cinética por parte do sistema. A maior perda ocorre quando os dois corpos permanecem juntos, caso em que a colisão é chamada de colisão perfeitamente inelástica.

O presente trabalho teve análise às colisões elásticas em uma dimensão como comentamos as colisões que acontecem no dia-a-dia são sempre inelásticas, mas podemos supor que algumas são aproximadamente elásticas, ou seja, que a energia cinética total dos corpos envolvidos na colisão não é convertida em outras formas de energia e, portanto, é conservada, isso significa que a energia dos corpos envolvidos na colisão não varia. Assim, por exemplo, a colisão da bola branca com uma bola colorida no jogo de sinuca pode ser considerada aproximadamente elástica.

Agora vamos examinar algumas situações especiais:

1. Quando as massas são iguais: Depois de uma colisão elástica frontal de corpos com massas iguais o copo 1 (inicialmente em movimento) pára totalmente e o corpo 2 (inicialmente em repouso) entra em movimento com a velocidade inicial do corpo 1. Em colisões elásticas frontais corpos com massas iguais simplesmente trocam suas velocidades. Isso é verdade mesmo que o corpo 2 não esteja inicialmente em repouso.

2. Quando o alvo é pesado: O corpo 1 (inicialmente em movimento) ricocheteia e refaz sua trajetória no sentido inverso, coma velocidade escalar praticamente inalterada. O corpo 2 (inicialmente em repouso), move-se para frente em baixa velocidade.

3. Quando o projétil é pesado: Este é o caso oposto do caso 2, o corpo 1 (inicialmente em movimento) simplesmente continua sua trajetória, praticamente sem ser freado pela colisão. O corpo 2 (inicialmente em repouso) é arremessado para frente com o dobro da velocidade do corpo 1.

No experimento foram utilizados duas esferas metálicas inicialmente suspensas por cordas verticais, podemos separar esse movimento complicado em duas etapas que podem ser analisadas separadamente: (1) a descida da esfera 1 (na qual a energia mecânica é conservada) e (2) a colisão das duas esferas (na qual o momento é conservado).Na 1° etapa quando a esfera 1 desce, a energia mecânica do sistema esfera-terra é conservada.(A energia mecânica não é alterada pela força da corda sobre a esfera 1 porque essa força é sempre perpendicular à trajetória da esfera.)

Na 2° etapa além da suposição de que a colisão é elástica, podemos fazer outras duas. Primeiro, podemos supor que a colisão é unidimensional, já que os movimentos das esferas são aproximadamente horizontais nos momentos anteriores e posteriores à colisão. Segundo, como a colisão dura pouco tempo pode supor que o sistema de duas esferas é fechado e isolado. Isso significa que o momento linear total do sistema é conservado.

...

Baixar como (para membros premium)  txt (11.7 Kb)  
Continuar por mais 6 páginas »
Disponível apenas no TrabalhosGratuitos.com