TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Eletronica I

Exames: Eletronica I. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  6/12/2013  •  3.376 Palavras (14 Páginas)  •  255 Visualizações

Página 1 de 14

Sumário

A Teoria dos Diodos 2

Circuitos com Diodos 5

Diodos com finalidades especificas 6

Diodos Zener 6

Funcionamento 6

Transistores Bipolares 7

Introdução 7

Estrutura e Simbologia 7

Emissor 8

Base 8

Coletor 8

Analogia em dois diodos 8

Teste do transistor 9

Modos de operação dos transistores bipolares 10

Primeira situação de polarização 10

Segunda situação de polarização 11

Terceira situação de polarização 13

Curva característica 14

Características dos pontos importantes da curva característica de um transistor: 15

Potenciômetros 16

Reguláveis 16

Variáveis 16

Lineares 16

Logarítmicos 16

Sensores de Temperatura 17

NTC 17

PTC 18

Reles 19

Bibliografia 21

A Teoria dos Diodos

O diodo mais comum consiste "simplesmente" da união de uma junção tipo N com uma junção tipo P. De um lado, ele possui material com muitos elétrons livres, enquanto do outro um material com muitas lacunas. No local de união desse material, alguns elétrons preencherão as lacunas (fenômeno chamado de recombinação), formando ali no meio uma região sem portadores de cargas livres. Essa região é chamada de camada de depleção. A figura abaixo esquematiza bem o interior do diodo:

O que acontece, com mais detalhes, é o seguinte. De um lado temos uma região N, ou seja, ela tem muitos elétrons livres. Essa região possui o material semicondutor (em geral silício) dopado com átomos pentavalentes, ou seja, que possuem 5 elétrons na última camada. Como na ligação covalente dos átomos de silício só são utilizados 4 elétrons, um daqueles cinco fica "sobrando", com bastante liberdade para se movimentar e conduzir corrente elétrica.

Do outro lado temos a região tipo P. Ali o material semicondutor é dopado com átomos trivalentes, ou seja, com apenas 3 elétrons na última camada. Como já falei antes, a ligação covalente necessita de 4 elétrons, mas como esse átomo possui apenas 3, ele deixa um "buraco" no lugar da ligação daquele quarto elétron. O nome desse buraco é lacuna, e ela se comporta como se fosse uma carga positiva, que se movimenta e conduz corrente elétrica. Para entender melhor essa parte recomendo as postagens "Modelo Atômico" e principalmente "Uma Introdução aos Semicondutores".••.

No ponto onde as duas regiões se juntam (chamado convenientemente de junção) ocorre a mágica dos semicondutores. De um lado temos alguns elétrons com liberdade para se movimentar. Do outro temos lugares onde deveriam ter elétrons, mas a ausência destes formou um "buraco". Então é natural pensar que alguns elétrons que estiverem passando por perto acabarão "caindo" nesses buracos, realizando o fenômeno chamado recombinação, que já falei anteriormente.•.

Agora, naquela região central, não há nem elétrons livres e nem lacunas, ou seja, não há nada para conduzir corrente elétrica naquela parte do diodo. Então a configuração do diodo é a parte N, com elétrons livres, a camada de depleção, sem portadores de carga, e a região P, que possui lacunas que se comportam como cargas positivas.

É interessante o resultado obtido com isso. Vamos fazer um pequeno exercício mental indispensável para quem quer realmente entender o funcionamento deste componente. Observe novamente a figura do diodo e imagine o que acontece quando colocamos um potencial positivo no lado P e outro negativo no lado N. As lacunas do lado P são empurradas (pela repulsão) em direção a camada de depleção, enquanto os elétrons livres do lado N também o são. Isso porque cargas iguais se repelem. Com isso a camada de depleção diminui. Se a diferença de potencial for suficiente para vencer a barreira da camada de depleção, o diodo irá entrar em condução, permitindo a livre passagem da corrente elétrica. Essa configuração de polo positivo no lado P e negativo no lado N é chamada polarização direta. Vale a pena lembrar que nos diodos de silício essa barreira corresponde a 0,7V. Nos diodos de germânio corresponde a 0,3V.

Agora imagine o que aconteceria se invertêssemos o diodo, ou seja, colocaremos agora o polo positivo no lado N e o polo negativo no lado P. Com isso as lacunas seriam atraídas pelo potencial negativo enquanto os elétrons seriam atraídos pelo potencial positivo. Dessa forma os portadores de carga (lacunas e elétrons) se afastariam da região central, aumentando assim a camada de depleção. Nessa configuração, chamada de polarização inversa, o diodo não conduz; ele entra em bloqueio, se comportando como uma chave aberta.

Podemos visualizar a ação do diodo através do gráfico acima, chamado de curva característica. Partindo de uma tensão nula (zero volts), vamos analisar o comportamento do componente. Conforme aumentamos positivamente a tensão, o diodo passa a conduzir pequenas correntes elétricas. Porém, quando atingimos a tensão exigida para transpor a camada de depleção (em geral 0,7V) o diodo passa a conduzir intensamente, mantendo para si 0,7V da tensão da fonte. Basicamente, para tensões acima daqueles 0,7V ele se comporta como um curto circuito.

Mas se aumentarmos negativamente a tensão, o diodo conduz apenas uma ínfima quantidade de corrente, que é chamada de corrente de fuga. Essa corrente é composta por uma corrente de fuga de superfície e também por uma corrente de saturação reversa. Prometo fazer um post a parte sobre elas, mas não se preocupe: na maioria das aplicações elas

...

Baixar como (para membros premium)  txt (22.9 Kb)  
Continuar por mais 13 páginas »
Disponível apenas no TrabalhosGratuitos.com