TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Experimento de Física Experimental - Lançamento de Projéteis

Por:   •  27/4/2023  •  Relatório de pesquisa  •  766 Palavras (4 Páginas)  •  98 Visualizações

Página 1 de 4

Experimento de Física

Experimental - Lançamento de Projéteis

Abraão Santana da Silva

Alana Cristina Chechelaca

Gabriel Lima Diniz

Gabriel Teixeira da Maia

20-23

Resumo

Neste experimento podemos determinar a trajetória de um projétil em movimento oblíquo, e utilizando a representação gráfica do mesmo e, aplicando as teorias sobre tal movimento, podemos obter alguns dados com velocidade de lançamento, altura máxima, tempo de voo, e alcance máximo do projétil em laboratório tal como a equação do movimento e outros parâmetros.

Introdução

Galileo descreveu o princípio da independência do movimento no seu trabalho "Diálogos sobre Novas Ciências", que pode ser utilizado para analisar o movimento de um projéctil. Quando a resistência do ar é ignorada, o projéctil move-se tanto na direção horizontal como na vertical de forma independente.

O projéctil move-se continuamente na direção horizontal, uma vez que nenhuma força está a actuar sobre ele nessa direcção. A única força que afecta o movimento do projéctil na direcção vertical é a gravidade local, que o faz mover-se com um movimento acelerado em direcção à sola com uma constante

Esta aceleração, muitas vezes conhecida como aceleração da gravidade, é uma constante para todos os objectos na superfície da Terra. Devido a isto, podemos prever com precisão a trajetória do projétil, lançando-o a vários ângulos e velocidades.

Imagem 1- Projétil lançado de um ponto P0=(x0,y0) com velocidade inicial V0

Na teoria o movimento balístico é descrito com uma parabólica (y = -a2+bx), e a partir da equação horária podemos descrever :

Equação da trajetória

y = (tanθ)x - (gx²)2v²cos²θ

onde:

y é a altura do projétil em relação a mesa;

x é a distância percorrida pelo projétil no eixo horizontal;

θ é o ângulo de lançamento em relação à horizontal;

g é a aceleração da gravidade (aproximadamente 9,8 m/s²);

v é a velocidade inicial do projétil.

Equação da altura máxima, (na ausência de forças externas)

y = y0+ v0y t + 12 a t2

onde:

y é a altura do projétil em relação ao solo;

y0 é a altura inicial do projétil (a altura da posição de lançamento);

y0y é a componente vertical da velocidade inicial do projétil;

t é o tempo decorrido desde o lançamento do projétil;

a é a aceleração vertical do projétil, que é igual à aceleração da gravidade(-g).

Equação do tempo de vôo

tvoo= 2 Voyg*2 Voyg

onde:

tvoo é o tempo de vôo do projétil, ou seja, o tempo total que o projétil leva para atingir o sensor desde o momento em que é lançado;

v0y é a componente vertical da velocidade inicial do projétil;

g é a aceleração da gravidade, que é a aceleração vertical do projétil;

y0 é a altura inicial do projétil em relação ao solo, ou seja, a altura da posição de lançamento.

Equação do alcance máximo

R = (v0)2 g sin(2θ)

onde:

R é o alcance máximo do projétil, ou seja, a distância horizontal máxima que ele percorre desde o ponto de lançamento até o ponto onde atinge o solo;

v0é a velocidade inicial total do projétil, que é a velocidade escalar resultante das componentes horizontal e vertical da velocidade inicial;

g é a aceleração da gravidade, que é a aceleração vertical do projétil;

θ é o ângulo de lançamento do projétil em relação ao solo.

Para uma velocidade inicial total fixa, o alcance

...

Baixar como (para membros premium)  txt (5.3 Kb)   pdf (52.2 Kb)   docx (10.8 Kb)  
Continuar por mais 3 páginas »
Disponível apenas no TrabalhosGratuitos.com