TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Materiais De Construicao

Artigos Científicos: Materiais De Construicao. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  14/4/2013  •  2.549 Palavras (11 Páginas)  •  538 Visualizações

Página 1 de 11

Em matemática, um vetor unitário ou versor num espaço vetorial normalizado é um vetor (mais comumente um vetor espacial) cujo comprimento é 1. Um vetor unitário é muitas vezes denotado com um “circunflexo”, logo: î.

No espaço euclidiano, o produto escalar de dois vetores unitários é simplesmente o cosseno do ângulo entre eles. Isto é devido à fórmula do produto escalar, já que os comprimentos de ambos vetores é 1.

O vetor normalizado û de um vetor não zero u é o vetor unitário codirecional com u, i.e.O termo vetor normalizado é algumas vezes utilizado simplesmente como sinônimo para vetor unitário.

Os elementos de uma base são geralmente vetores unitários. Na coordenada cartesiana tridimensional, esses elementos são usualmente i, j e k — vetores unitários nas direções dos eixos x, y e z, respectivamente.

Estes nem sempre são escritos com um circunflexo, mas pode ser normalmente assumido que i, j e k são vetores unitários na maioria dos contextos.

Outros sistemas de coordenadas, como coordenada polar ou coordenada esférica utiliza vetores unitários diferentes; suas notações variam.

Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Em matemática, um vetor unitário ou versor num espaço vetorial normalizado é um vetor (mais comumente um vetor espacial) cujo comprimento é 1. Um vetor unitário é muitas vezes denotado com um “circunflexo”, logo: î.

No espaço euclidiano, o produto escalar de dois vetores unitários é simplesmente o cosseno do ângulo entre eles. Isto é devido à fórmula do produto escalar, já que os comprimentos de ambos vetores é 1.

O vetor normalizado û de um vetor não zero u é o vetor unitário codirecional com u, i.e.

O termo vetor normalizado é algumas vezes utilizado simplesmente como sinônimo para vetor unitário.

Os elementos de uma base são geralmente vetores unitários. Na coordenada cartesiana tridimensional, esses elementos são usualmente i, j e k — vetores unitários nas direções dos eixos x, y e z, respectivamente.

Estes nem sempre são escritos com um circunflexo, mas pode ser normalmente assumido que i, j e k são vetores unitários na maioria dos contextos.

Outros sistemas de coordenadas, como coordenada polar ou coordenada esférica utiliza vetores unitários diferentes; suas notações variam.

Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Em matemática, um vetor unitário ou versor num espaço vetorial normalizado é um vetor (mais comumente um vetor espacial) cujo comprimento é 1. Um vetor unitário é muitas vezes denotado com um “circunflexo”, logo: î.

No espaço euclidiano, o produto escalar de dois vetores unitários é simplesmente o cosseno do ângulo entre eles. Isto é devido à fórmula do produto escalar, já que os comprimentos de ambos vetores é 1.

O vetor normalizado û de um vetor não zero u é o vetor unitário codirecional com u, i.e.

O termo vetor normalizado é algumas vezes utilizado simplesmente como sinônimo para vetor unitário.

Os elementos de uma base são geralmente vetores unitários. Na coordenada cartesiana tridimensional, esses elementos são usualmente i, j e k — vetores unitários nas direções dos eixos x, y e z, respectivamente.

Estes nem sempre são escritos com um circunflexo, mas pode ser normalmente assumido que i, j e k são vetores unitários na maioria dos contextos.

Outros sistemas de coordenadas, como coordenada polar ou coordenada esférica utiliza vetores unitários diferentes; suas notações variam.

Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Em matemática, um vetor unitário ou versor num espaço vetorial normalizado é um vetor (mais comumente um vetor espacial) cujo comprimento é 1. Um vetor unitário é muitas vezes denotado com um “circunflexo”, logo: î.

No espaço euclidiano, o produto escalar de dois vetores unitários é simplesmente o cosseno do ângulo entre eles. Isto é devido à fórmula do produto escalar, já que os comprimentos de ambos vetores é 1.

O vetor normalizado û de um vetor não zero u é o vetor unitário codirecional com u, i.e.

O termo vetor normalizado é algumas vezes utilizado simplesmente como sinônimo para vetor unitário.

Os elementos de uma base são geralmente vetores unitários. Na coordenada cartesiana tridimensional, esses elementos são usualmente i, j e k — vetores unitários nas direções dos eixos x, y e z, respectivamente.

Estes nem sempre são escritos com um circunflexo, mas pode ser normalmente assumido que i, j e k são vetores unitários na maioria dos contextos.

Outros sistemas de coordenadas, como coordenada polar ou coordenada esférica utiliza vetores unitários diferentes; suas notações variam.

Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Em matemática, um vetor unitário ou versor num espaço vetorial normalizado é um vetor (mais comumente um vetor espacial) cujo comprimento é 1. Um vetor unitário é muitas vezes denotado com um “circunflexo”, logo: î.

No espaço euclidiano, o produto escalar de dois vetores unitários é simplesmente o cosseno do ângulo entre eles. Isto é devido à fórmula do produto escalar, já que os comprimentos de ambos vetores é 1.

O vetor normalizado û de um vetor não zero u é o vetor unitário codirecional com u, i.e.

O termo vetor normalizado é algumas vezes utilizado simplesmente como sinônimo para vetor unitário.

Os elementos de uma base são geralmente vetores unitários. Na coordenada cartesiana tridimensional, esses elementos são usualmente i, j e k — vetores unitários nas direções dos eixos x, y e z, respectivamente.

Estes nem sempre são escritos com um circunflexo, mas pode ser normalmente assumido

...

Baixar como (para membros premium)  txt (17 Kb)  
Continuar por mais 10 páginas »
Disponível apenas no TrabalhosGratuitos.com