Trabalho De Raiz Quadrada
Monografias: Trabalho De Raiz Quadrada. Pesquise 862.000+ trabalhos acadêmicosPor: andressa1 • 22/4/2014 • 481 Palavras (2 Páginas) • 634 Visualizações
Dê um basta ao enunciado "a raiz quadrada de um número N é igual a um número positivo elevado ao quadrado" e aos tradicionais exercícios que costumam ser propostos aos estudantes após essa explicação. Quando esse é o procedimento colocado em cena, é comum surgirem perguntas como "Para que isso serve?", "De onde surgiu essa ideia?" e "Por que é feito assim?".
A raiz quadrada é um conteúdo que tem pouquíssima ligação com os contextos cotidianos e está mais relacionada ao puro fazer matemático e ao trabalho de profissionais como arquitetos, engenheiros, projetistas e programadores. "Por ser uma ideia bastante abstrata, dificilmente os jovens vão entendê-la somente com uma explicação teórica", fala Andréia Silva Brito, docente da EEEFM Carlos Drumond de Andrade, em Presidente Médici, a 412 quilômetros de Porto Velho.
"Para que os alunos construam um entendimento lógico do conceito de raiz quadrada e realizem a operação com números de diferentes grandezas, é preciso propor que encontrem soluções para diversos problemas", diz Priscila Monteiro, assessora de Matemática de redes públicas e privadas e selecionadora do Prêmio Victor Civita - Educador Nota 10.
A saída é explicar que o valor da raiz está na área do quadrado
O termo raiz, de acordo com o dicionário Houaiss, quer dizer "base ou parte inferior". E quadrada remete "à figura plana quadrado". As definições ajudam a compreender que extrair a raiz quadrada exata de um número significa encontrar o tamanho de um dos lados de um quadrado conhecendo sua área. A ideia foi concebida por matemáticos árabes e adotada pelos europeus no fim da Idade Média. Iniciar o trabalho em sala com essa estratégia geométrica é um bom caminho, pois ela garante que o aluno perceba um sentido para o cálculo (leia a sequência didática).
Por exemplo: se uma toalha tem 25 centímetros quadrados de área, qual o tamanho de cada um dos lados? Vale lançar mão do cálculo mental, usar a calculadora, desenhar a figura em papel quadriculado e calcular por aproximação: incentive o grupo a encontrar diferentes estratégias e ferramentas para chegar ao resultado (veja três possibilidades de calcular a raiz quadrada de 144 no quadro abaixo). Usá-las para discutir os procedimentos válidos e econômicos é uma excelente ferramenta didática - lembrando que não existe só uma maneira certa para resolver um problema.
Outra possibilidade para explorar o assunto ainda usando a geometria é mostrar quadrados de tamanhos diferentes e pedir que os estudantes descubram a medida dos lados e a área. "Com ou sem régua, eles podem quadricular as figuras e contar quantos quadradinhos iguais foram criados", explica Ademir Pereira Júnior, professor do Colégio Estadual Adaile Maria Leite, em Maringá, a 423 quilômetros de Curitiba. Ao quadricular uma das figuras, quem obtiver cinco quadradinhos iguais em linha, por exemplo, vai saber que o lado da figura mede 5, e a área, 25 - e, em consequência disso, chegará à raiz de 25.
...