Aplicação de aplicação de dados estatísticos
Pesquisas Acadêmicas: Aplicação de aplicação de dados estatísticos. Pesquise 862.000+ trabalhos acadêmicosPor: Humbertopalmeida • 31/10/2013 • Pesquisas Acadêmicas • 1.019 Palavras (5 Páginas) • 322 Visualizações
De acordo com a Revista do Instituto Internacional de Estatística, "Cinco homens, Hermann Conring, Gottfried Achenwall, Johann Peter Süssmilch, John Graunt e William Petty já receberam a honra de serem chamados de fundadores da estatística, por diferentes autores."5
Alguns autores dizem que é comum encontrar como marco inicial da estatística a publicação do "Observations on the Bills of Mortality" (Observações sobre os Sensos de Mortalidade, 1662) de John Graunt. As primeiras aplicações do pensamento estatístico estavam voltadas para as necessidades de Estado, na formulação de políticas públicas, fornecendo dados demográficos e econômicos. A abrangência da estatística aumentou no começo do século XIX para incluir a acumulação e análise de dados de maneira geral. Hoje, a estatística é largamente aplicada nas ciências naturais, e sociais, inclusive na administração pública e privada.
Seus fundamentos matemáticos foram postos no século XVII com o desenvolvimento da teoria das probabilidades por Pascal e Fermat, que surgiu com o estudo dos jogos de azar. O método dos mínimos quadrados foi descrito pela primeira vez por Carl Friedrich Gauss cerca de 1794. O uso de computadores modernos tem permitido a computação de dados estatísticos em larga escala e também tornaram possível novos métodos antes impraticáveis.
Fundamentos[editar]
Ligações para estatística observacional fenômeno são coletados pelos fenômenos estatísticos.
Estatística inferencial é o conjunto de técnicas utilizadas para identificar relações entre variáveis que representem ou não relações de causa e efeito;
Estatística robusta é o conjunto de técnicas utilizadas para atenuar o efeito de outliers e preservar a forma de uma distribuição tão aderente quanto possível aos dados empíricos.
A estatística não é uma ferramenta matemática que nos informa sobre o quanto de erro nossas observações apresentam sobre a realidade pesquisada. A estatística baseia-se na medição do erro que existe entre a estimativa de quanto uma amostra representa adequadamente a população da qual foi extraída. Assim o conhecimento de teoria de conjuntos, análise combinatória e cálculo são indispensáveis para compreender como o erro se comporta e a magnitude do mesmo. É o erro (erro amostral) que define a qualidade da observação e do delineamento experimental.
A faceta dessa ferramenta mais palpável é a estatística descritiva. A descrição dos dados coletados é comumente apresentado em gráficos ou relatórios e serve tanto a prospecção de uma ou mais variáveis para posterior aplicação ou não de testes estatísticos bem como a apresentação de resultados de delineamentos experimentais.
Nós descrevemos o nosso conhecimento (e) de forma matemática e tentamos aprender mais sobre aquilo que podemos observar. Isto requer:
O planejamento das observações por forma a controlar a sua variabilidade (concepção do experimento);
Sumarização da coleção de observações;
Inferência estatística - obter um consenso sobre o que as observações nos dizem sobre o mundo que observamos.
Em algumas formas de estatística descritiva, nomeadamente mineração de dados (data mining), os segundo e terceiro passos tornam-se normalmente mais importantes que o primeiro.
A probabilidade de um evento é freqüentemente definida como um número entre zero e um. Na realidade, porém, nunca há situações que tenham probabilidades 0 ou 1. Você pode dizer que, por indução, o sol irá certamente nascer amanhã, mas, e se acontecer um evento extremamente improvável que o destrua?
Normalmente aproximamos a probabilidade de alguma coisa para cima ou para baixo porque elas são tão prováveis ou improváveis de ocorrer, que é fácil de reconhecê-las como probabilidade de um ou zero. Entretanto, isso pode levar a desentendimentos e comportamentos perigosos, porque é difícil distinguir entre, uma probabilidade de 10−4 e uma de 10−9, a despeito da grande diferença numérica entre elas. Por exemplo, se você espera atravessar uma estrada 105 ou 106 vezes na sua vida, definir o risco de atravessá-la em 10−9 significa que você está bem seguro pelo resto da sua vida. Entretanto, um risco de 10−4 significa que é bem provável que você tenha um acidente, mesmo que intuitivamente um risco de 0,01% pareça muito baixo.
Estatística computacional[editar]
O crescimento rápido e sustentados no poder de processamento dos computadores a partir da segunda metade do século XX teve um forte impacto na prática da estatística. Os modelos estatísticos mais antigos eram quase sempre lineares, mas os computadores modernos junto com algoritmos numéricos apropriados, causaram um aumento do interesse nos modelos
...