TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Uma integral definitiva e indeterminada

Tese: Uma integral definitiva e indeterminada. Pesquise 861.000+ trabalhos acadêmicos

Por:   •  29/3/2014  •  Tese  •  847 Palavras (4 Páginas)  •  504 Visualizações

Página 1 de 4

Etapa 1 - Integral Definida e Indefinida

Passo 1: Historia do Surgimento das Integrais

 

       O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Desenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes. O Cálculo auxilia em vários conceitos e definições na matemática, química, física clássica, física moderna e economia. O estudante de cálculo deve ter um conhecimento em certas áreas da matemática, como funções, geometria e trigonometria, pois são a base do cálculo. O cálculo tem inicialmente três "operações-base", ou seja, possui áreas iniciais como o cálculo de limites, o cálculo de derivadas de funções e a integral de diferenciais.

A integral indefinida também pode ser chamada de antiderivada, uma vez que é um processo que inverte a derivada de funções. Já a integral definida, inicialmente definida como Soma de Riemann, estabelece limites de integração, ou seja, é um processo estabelecido entre dois intervalos bem definidos, daí o nome integral definida.

       O Cálculo Diferencial e Integral, também chamado de cálculo infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento e onde forças variáveis agem produzindo aceleração, o cálculo é a matemática a ser empregada.

O conceito de derivada é fundamentalmente mais avançado do que os conceitos encontrados em álgebra. Nessa matéria, os estudantes aprendem sobre funções em que o número de entrada gera um número de saída. Por exemplo, se no dobro da função é inserido 3, então a saída é 6, enquanto se a função é quadrática, e é inserido 3, então a saída é 9. Mas na derivada, a entrada é uma função e a saída é outra função.

Para entender a derivada, os estudantes precisam aprender a notação matemática. Na notação matemática, um símbolo comum para a derivada da função é um sinal de apóstrofo chamado "linha". Então a derivada de f é f ' (f linha). Isso em notação matemática seria escrito assim:

.

Se a função de entrada é o tempo, então a derivada dessa função é a taxa em que a função é alterada.

Se a função é linear, ou seja, o gráfico da função é uma linha reta, então a função pode ser escrita como y = m x + b, onde:

.

Integrais

O Cálculo Integral é o estudo das definições, propriedades, e aplicações de dois conceitos relacionados, as integrais indefinidas e as integrais definidas. O processo de encontrar o valor de uma integral é chamado integração. Em linguagem técnica, o calculo integral estuda dois operadores lineares relacionados.

A integral indefinida é a antiderivada, o processo inverso da derivada. F é uma integral indefinida de f quando f é uma derivada de F. (O uso de letras maiúsculas e minúsculas para uma função e sua integral indefinida é comum em cálculo.)

A integral definida insere uma função e extrai um número, o qual fornece a área entre o gráfico da função e o eixo do x. A definição técnica da integral definida é o limite da soma das áreas dos retângulos, chamada Soma de Riemann.

Um exemplo motivacional é a distância (D) viajada em um determinado tempo (t).

Se f(x) no diagrama da esquerda representa a velocidade variando de acordo com o tempo, a distância viajada entre os tempos representados por a e b é a área da região escura s.

O

...

Baixar como (para membros premium)  txt (6.1 Kb)  
Continuar por mais 3 páginas »
Disponível apenas no TrabalhosGratuitos.com