A Geometria Analística
Por: Sadraque Soares • 24/11/2018 • Artigo • 252 Palavras (2 Páginas) • 193 Visualizações
5) ∫x² + x-2 dx = + + c = x³ – + c[pic 1][pic 2][pic 3][pic 4]
6) ∫ √x³ + ³√x² dx
∫ +1 dx ∫+1 dx [pic 5][pic 6]
∫ dx + dx = 2√+ 3 ³√+ c[pic 7][pic 8][pic 9][pic 10]
7) ∫x³ + 6x+1 dx ∫ + ∫ + 1 dx[pic 11][pic 12]
+ 3x² + x + c[pic 13]
8) x(1+2x) 4 dx
U=1 + 2x
Du=2 du=2dx dx=du[pic 14]
U4 xdx ∫* + c = + C[pic 15][pic 16][pic 17]
9) ∫ (1-t)(2+t²) dt
∫2+t² – 2t-t³ dt
2∫dt + ∫ – ∫– ∫[pic 18][pic 19][pic 20]
2x+ - - [pic 21][pic 22][pic 23]
10)u(u²+2) ² du
∫u(u²+2)*(u²+2)du
∫u(u4+2u²+2u²+4)du
u(u4+4u²+4)du
∫u5+4u³+4u
∫ + ∫ + ∫ + c[pic 24][pic 25][pic 26]
u6 + u4 + 2u² + c[pic 27]
21)[ ∫5.0] (6x²-4x+5)dx = – + 5x[pic 28][pic 29]
[ ∫5.0] 2x³-2x²+5x [ ∫5.0] [2(5) ³-2(5) ²+5*5]-0
[ ∫5.0] 2*125-2*25+25=250-50+25=225
22) [ ∫3.1] (1+2x-4x³)dx = [ ∫3.1] x+- [pic 30][pic 31]
[ ∫3.1] x+x²-x4 [ ∫3.1] [3+3²-34]-1
3+9-82-1=12-83=71
23) [ ∫0.-1] x²-ex [ ∫0.-1] [-2-ex]-[-1] ²-e-1 =-1- [pic 32]
24) [ ∫0.-2] (u5-u³+u²)du = [ ∫0.-2] – + [pic 33][pic 34][pic 35]
[ ∫0.-2] - + = [ ∫0.-2] - - =[pic 36][pic 37][pic 38][pic 39][pic 40][pic 41]
...