TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

OS NÚMEROS COMPLEXOS

Por:   •  18/11/2017  •  Exam  •  3.470 Palavras (14 Páginas)  •  235 Visualizações

Página 1 de 14

NÚMEROS COMPLEXOS

1. Definições

Vimos na resolução de uma equação do 2º grau que se o discriminante é negativo, ela não admite raízes reais. Por exemplo, a equação

x2 + 9 = 0

não admite raízes reais. Se usarmos os métodos que conhecemos para resolvê-la, obtemos

x2 = -9

x = ± [pic 1]

mas é inaceitável tal resultado para x; os números negativos não têm raiz quadrada.

Para superar tal impossibilidade e poder, então, resolver todas equações do 2º grau, os matemáticos ampliaram o sistema de números, inventando os números complexos.

Primeiro, eles definiram um novo número

i = [pic 2]

Isso conduz a i2 = -1. Um número complexo é então um número da forma a + bi onde a e b são números reais.

Para a equação acima fazemos

x = ± [pic 3]

x = ± [pic 4]

x = ± [pic 5]. [pic 6]

x = ± 3 i

As raízes da equação x2 + 9 = 0 são 3i e - 3i.

Definição

Um número complexo é uma expressão da forma

a + bi

onde a e b são números reais e i2 = -1.

No número complexo a + bi, a é a parte real e b é a parte imaginária.

Exemplos

2 + 5i

parte real 2

parte imaginária 5

[pic 7] [pic 8] i

parte real [pic 9]

parte imaginária [pic 10]

12i

parte real 0

parte imaginária 12

-9

parte real -9

parte imaginária 0

Um número como 12i, com parte real 0, chama-se número imaginário puro. Um número real como -9, pode ser considerado como um número complexo com parte imaginária 0.

[pic 11]

Igualdade de números complexos

Os números complexos a + bi e c + di são iguais se suas partes reais são iguais e suas partes imaginárias são iguais, isto é:

a + bi = c + di se [pic 12]

Exemplos

2 + 5i = [pic 13]

Se x e y são números reais e x + yi = 7 - 4i, então x = 7 e y = - 4.

Fonte: http://www.10emtudo.com.br/demo/matematica/numeros_complexos/index_1.html

2. Aritmética dos números complexos

Adição e Subtração

Adição

(a + bi) + (c + di) = (a + c) + (b + d)i

Para adicionarmos dois números
complexos, adicionamos as partes
reais e as partes imaginárias

Subtração

(a + bi) - (c + di) = (a – c) + (b – d)i

Para subtrairmos dois números
complexos, subtraímos as partes
reais e as partes imaginárias

Exemplos

(3 + 4i) + (- 7 + 8i) = (3 - 7) + (4 + 8) i

= - 4 + 12i

Na prática, fazemos

(3 + 4i) + (-7 + 8i) = [pic 14]

(- 5 + 6i) - (4 - 2i) = (- 5 - 4) + [6 - (- 2)] i

= - 9 + 8i

Na prática fazemos

(-5 + 6i) [pic 15]

Multiplicação

(a + bi) . (c + di) = (ac – bd) + (ad + bc)i

Multiplicamos números
complexos como multiplicamos
binômios, usando i
2 = - 1

Exemplos

[pic 16]= 6 – 8i + 9i – 12i2

Distributiva

= 6 + i – 12 . (-1)

-8i + 9i = i  e  i2 = - 1

= 6 + i + 12

 

= 18 + i

 

[pic 17]= – 8 – 4i + 4i + 2i2

Distributiva

= – 8 + 2 . (-1)

-4i + 4i = 0  e  i2 = - 1

=  – 8 – 2

 

= – 10

 

[pic 18]= – 3i . (4) – 3i . (-2i)

= - 12i + 6i2

= - 12i + 6 . (-1)

= - 6 - 12i

...

Baixar como (para membros premium)  txt (18.6 Kb)   pdf (432.6 Kb)   docx (92.2 Kb)  
Continuar por mais 13 páginas »
Disponível apenas no TrabalhosGratuitos.com