TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Aplicações Das Derivadas

Pesquisas Acadêmicas: Aplicações Das Derivadas. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  8/6/2014  •  2.228 Palavras (9 Páginas)  •  245 Visualizações

Página 1 de 9

Notas de Aula: Aplicações das Derivadas

Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta, vamos explorar este fato e desenvolver técnicas para o uso de derivadas para auxiliar a construção de gráficos. Estão incluídas, também, as aplicações da derivada a problemas típicos envolvendo máximos e mínimos, taxas de variação e cálculo de limites, que tem aplicações práticas nos mais diversos campos, como geometria, engenharia, física, biologia e economia. Na verdade, podemos resumir tudo isto dizendo que a derivada constitui uma ferramenta poderosa para o estudo e análise de funções.

Cabe observar que o conteúdo apresentado nesta seção não é exaustivo e o enfoque pretendido é, na medida do possível, eminentemente prático. Por outro lado, o leitor interessado em aprofundar sua base teórica, conhecendo os detalhes, os teoremas e as demonstrações que dão embasamento a este conteúdo deve consultar os livros de cálculo tradicionais.

Taxas de variação ou taxas relacionadas

Um problema envolvendo taxas de variação de variáveis relacionadas é chamado de problema de taxas relacionadas. Assim, se uma variável x é função do tempo t, a taxa de variação de x em relação ao tempo é dada por dt dx. Quando duas ou mais variáveis, todas função de t, são relacionadas por uma equação, a relação entre suas taxas de variação pode ser obtida diferenciando a equação em relação a t.

Em problemas com taxas relacionadas, as variáveis têm uma relação específica para os valores de t, onde t é a medida do tempo. Essa relação é usualmente expressa na forma de uma equação. Os valores das variáveis e as taxas de variação das variáveis em relação à t são freqüentemente dados num determinado instante. Considere o exemplo a seguir:

Exemplo:

Um tanque tem a forma de um cone invertido com 16 m de altura e uma base com 4 m de raio. A água “flui” no tanque a uma taxa de 2 m3/min. Com que velocidade o nível da água estará se elevando quando sua profundidade for de 5 m?

Solução:

Seja t o tempo medido em minutos decorridos desde que a água começou a fluir dentro do tanque; h a altura em metros do nível de água em t min; r a medida em metros do raio da superfície da água em t min; e V a medida, em metros cúbicos, do volume de água no tanque em t min. Em qualquer instante, o volume de água no tanque pode ser expresso em termos do volume do cone (Fig. 1).

Fig 1. Tanque na forma de um cone

V, r e h são todas funções de t. Como a água está fluindo no tanque a uma taxa de 2 m3/min, dh quando h = 5m. Para expressar r em termos de h, temos,

dos triângulos semelhantes,

Logo,

Então,

dt dhh161dt

Assim sendo, o nível de água está subindo a uma taxa de π25 32m/min quando a profundidade da

Os passos a seguir representam um procedimento possível para resolver problemas envolvendo taxas relacionadas. 1. Faça uma figura, se isso for possível. 2. Defina as variáveis. Em geral defina primeiro t, pois as outras variáveis usualmente dependem de t. 3. Escreva todos os fatos numéricos conhecidos sobre as variáveis e suas derivadas em relação à t. 4. Obtenha uma equação envolvendo as variáveis que dependem de t. 5. Derive em relação a t ambos os membros da equação encontrada na etapa 4. 6. Substitua os valores de quantidades conhecidas na equação da etapa 5 e resolva em termos da quantidade desejada.

Vimos que a interpretação geométrica de derivada de uma função é a inclinação da reta tangente ao gráfico da função em um ponto. Esse fato possibilita-nos aplicar derivadas como recurso auxiliar no esboço de gráficos. Por exemplo, podemos usar a derivada para determinar os pontos onde a reta tangente é horizontal; esses são os pontos onde a derivada é zero. A derivada também pode ser usada para encontrarmos os intervalos nos quais a função está acima ou abaixo da reta tangente. Discutiremos a seguir, de forma sucinta, a técnica para construção de gráficos com o auxílio das derivadas na análise de uma função.

Funções crescentes e decrescentes.

A taxa de variação de uma função y = f (x) em relação a x, é dada por y’ = f' (x). Quando x cresce num intervalo, y cresce se y' for positiva e decresce se y’ for negativa.

Na Fig.2, a curva y = f (x) está subindo de A para C, de D para F e de H para I. É, claro que a função é crescente nos intervalos a < x < c, d < x < f, e h < x < i. Analogamente, a curva está descendo de C para D e de F para H, e a função é decrescente nos intervalos c < x < d e f < x < h.

Fig 2.

Valores críticos e Máximos e Mínimos relativos

Os valores críticos para uma função y = f(x) são valores de x, para os quais a função é definida e nos quais y’ = 0 ou se torna infinita. Na Fig. 2, B, C, D, F e H são pontos críticos da curva e suas abscissas x = b, x = c, x = d, x = f e x = h são valores críticos para a função.

Uma função y = f (x) tem um valor máximo relativo para x = x0, se f (x0) for maior do que os valores que imediatamente o precedem e sucedem na função. Quando x aumenta, passando por x = x0, f (x) varia, passando de crescente para decrescente e f'(x) muda o sinal de positivo para negativo.

Uma função y = f (x) tem um valor mínimo relativo para x = x0, se f (x0) for menor do que os valores que imediatamente o precedem e sucedem na função. Quando x aumenta, passando por x = x0, f (x) varia, passando de decrescente para crescente e f'(x) muda o sinal de negativo para positivo.

Na Fig. 2 C e F são pontos máximos e suas ordenadas são valores máximos da função correspondente. Do mesmo modo, D e H são pontos mínimos e suas ordenadas são valores mínimos da função. Pontos de máximos e mínimos de uma curva são pontos críticos, porém um ponto crítico não é, necessariamente, um ponto de máximo ou mínimo; assim, B é um ponto crítico, porém, não é máximo

...

Baixar como (para membros premium)  txt (12.9 Kb)  
Continuar por mais 8 páginas »
Disponível apenas no TrabalhosGratuitos.com