TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Estatistica Basica

Trabalho Universitário: Estatistica Basica. Pesquise 861.000+ trabalhos acadêmicos

Por:   •  22/8/2014  •  12.700 Palavras (51 Páginas)  •  645 Visualizações

Página 1 de 51

ESTATÍSTICA BÁSICA

CONCEITOS FUNDAMENTAIS____________________________________________________________1

1.1. INTRODUÇÃO

A Estatística pode ser encarada como uma ciência ou como um método de estudo.

Duas concepção para a palavra ESTATÍSTICA:

a) no plural (estatística), indica qualquer coleção consistente de dados numéricos, reunidos com a finalidade de fornecer informações acerca de uma atividade qualquer. Pôr exemplo, as estatística demográficas referem-se as dados numéricos sobre nascimentos, falecimentos, matrimônios, desquites, etc.

b) no singular, indica um corpo de técnicas, ou ainda uma metodologia técnica desenvolvida para a coleta, a classificação, a apresentação, a análise e a interpretação de dados quantitativos e a utilização desses dados para a tomada de decisões.

Qualquer ciência experimental não pode prescindir das técnicas proporcionadas pela Estatística, como pôr exemplo, a Física, a Biologia, a Administração, a Economia, etc. Todos esses ramos de atividade profissional tem necessidade de um instrumental que se preocupa com o tratamento quantitativo dos fenômenos de massa ou coletivos, cuja mensuração e análise requerem um conjunto de observações de fenômeno ou particulares.

1.2. ESTATÍSTICA

CONCEITO: é a ciência que se preocupa com a coleta, a organização, descrição (apresentação), análise e interpretação de dados experimentais e tem como objetivo fundamental o estudo de uma população.

Este estudo pode ser feito de duas maneiras:

• Investigando todos os elementos da população ou

• Por amostragem, ou seja, selecionando alguns elementos da população

DIVISÃO DA ESTATÍSTICA

- Estatística Descritiva: é aquela que se preocupa com a coleta, organização, classificação,apresentação, interpretação e analise de dados referentes ao fenômeno através de gráficos e tabelas além de calcular medidas que permita descrever o fenômeno.

- Estatística Indutiva (Amostral ou Inferêncial): é a aquela que partindo de uma amostra, estabelece hipóteses, tira conclusões sobre a população de origem e que formula previsões fundamentando-se na teoria das probabilidades. A estatística indutiva cuida da análise e interpretação dos dados.

O processo de generalização do método indutivo está associado a uma margem de incerteza. Isto se deve ao fato de que a conclusão que se pretende obter para o conjunto de todos os indivíduos analisados quanto a determinadas características comuns baseia-se em uma parcela do total de observações.

1.3. POPULAÇÃO

CONCEITO: é o conjunto, finito ou infinito, de indivíduos ou objetos que apresentam em comum determinadas características definidas, cujo comportamento interessa analisar.

A população é estudada em termos de observações de características nos indivíduos (animados ou inanimados) que sejam relevantes para o estudo, e não em termos de pessoas ou objetos em si. O objetivo é tirar conclusões sobre o fenômeno em estudo, a partir dos dados observados.

Como em qualquer estudo estatístico temos em mente estudar uma ou mais características dos elementos de uma população, é importante definir bem essas características de interesse para que seja delimitado os elementos que pertencem à população e quais os que não pertencem.

Exemplos:

1. Estudar os filhos tidos, tipo de moradia, condições de trabalho, tipo de sanitário. Números de quartos para dormir, estado civil, uso da terra, tempo de trabalho, local de nascimento, tipo de cultivo, etc., dos agricultores do Estado do Pará.

População: Todos os agricultores (proprietários de terra ou não) plantadores das culturas existentes no Estado do Pará.

2. Estudar a precipitação pluviométrica anual (em mm) na cidade de Belém.

População: Conjunto das informações coletadas pela Estação Pluviométrica, durante o ano.

4. As alturas dos cidadãos do Pará constituem uma população ou a população dos pesos desses cidadãos.

Divisão da população

- População Finita: apresenta um número limitado de elementos. É possível enumerar todos os elementos componentes.

Exemplos:

1. Idade dos universitários do Estado do Pará.

População: Todos os universitários do Estado do Pará.

- População Infinita: apresenta um número ilimitado de elementos. Não é possível enumerar todos os elementos componentes.

Entretanto, tal definição existe apenas no campo teórico, uma vez que, na prática, nunca encontraremos populações com infinitos elementos, mas sim, populações com grande número de componentes; e nessas circunstâncias, tais populações são tratadas como se fossem infinitas.

Exemplos:

1. Tipos de bactérias no corpo humano

População: Todas as bactérias existentes no corpo humano.

2. Comportamento das formigas de certa área

População: Todas as formigas da área em estudo.

1.4. AMOSTRAGEM

É a coleta das informações de parte da população, chamada amostra (representada por pela letra “n”), mediante métodos adequados de seleção destas unidades.

1.5. AMOSTRA

É uma parte (um subconjunto finito) representativa de uma população selecionada segundo métodos adequados.

O objetivo é fazer inferências, tirar conclusões sobre populações com base nos resultados da amostra, para isso é necessário garantir que amostra seja representativa, ou seja, a amostra deve conter as mesmas características básicas da população, no que diz respeito ao fenômeno que desejamos pesquisar.

O termo indução é um processo de raciocínio em que, partindo-se do conhecimento de uma parte, procura-se tirar conclusões sobre a realidade no todo.

Ao induzir estamos sujeitos a erros. Entretanto, a Estatística Indutiva, que obtém resultados sobre populações a partir das amostras, diz qual a precisão dos resultados e com que probabilidade se pode confiar nas conclusões obtidas.

1.6. CENSO

É o exame completo de toda população.

Quanto maior a amostra mais precisas e confiáveis deverão ser as induções feitas sobre a população. Logo, os resultados mais perfeitos são obtidos pelo Censo. Na prática, esta conclusão muitas vezes não acontece, pois, o emprego de amostras, com certo rigor técnico, pode levar a resultados mais confiáveis ou até mesmo melhores do que os que seriam obtidos através de um Censo.

As razões de se recorrer a amostras são: menor custo e tempo para levantar dados; melhor investigação dos elementos observados.

1.7. PARÂMETRO: valor (usualmente desconhecido) que caracteriza uma população (por exemplo, a média populacional e o desvio-padrão populacional são parâmetros).

População Dúvidas

x x x x x x x x Parâmetros: Amostra Quantas unidades?

x x x x x x x x Média aritmética x x x x x Quais as unidades?

x x x x x x x x

x x x x x x x x Mediana

Moda x x x x x

x x x x x Estimadores ou Estatísticas:

x x x x x x x x Variância absoluta Média aritmética

x x x x x x x x Desvio Padrão Mediana

Variância relativa Moda

Coeficiente de Variação

Proporção Variância absoluta

Desvio Padrão

Total Variância relativa

Coeficiente de Variação

Proporção

Total

1.8. FENÔMENOS ESTATÍSTICOS

Refere-se a qualquer evento que se pretende analisar cujo estudo seja possível de aplicação de técnicas da estatística.

A Estatística dedica-se ao estudo dos fenômenos de massa, que são resultantes do concurso de um grande número de causas, total ou parcialmente desconhecidas.

TIPOS DE FENÔMENOS:

Fenômenos Coletivos ou de Massa

Não podem ser definidos pôr uma simples observação.

Exemplos: a natalidade, a mortalidade, a nupcialidade, a idade média dos agricultores do Estado do Pará, o sexo dos agricultores.

Fenômenos Individuais

Compõem os fenômenos coletivos.

Exemplos: cada nascimento, cada pessoa que morre, cada agricultor investigado.

1.9. CARACTERÍSTICAS

É preciso definir qual(is) a(s) característica(s) de interesse que será(ão) analisada(s).

A característica de interesse pode ser de natureza qualitativa ou quantitativa.

. ATRIBUTOS: são todas as características de uma população que não podem ser medidas.

Os indivíduos ou objetos são colocados em categorias ou tipos e conta-se a freqüência com que ocorrem.

Exemplos: Sexo (masculino e feminino); estado civil (solteiro, casado, viúvo, etc.); tipo de moradia (madeira, tijolo), situação do aluno (aprovado, reprovado), religião.

CLASSIFICAÇÃO DOS ATRIBUTOS

1. Dicotomia: quando a classe em que o atributo é considerado admite apenas duas categorias.

Exemplos: Sexo (masc. e fem.); Existência ou ausência de certo produto agrícola (existência, ausência), resposta a uma pergunta: (concorda, não concorda), (sim, não).

2. Classificação policotômica ou policotomia: quando a classe em que o atributo é considerado admite mais de duas categorias.

Exemplos: Estado civil (solteiro, casado, viúvo), classe social (alta, média ou baixa).

. VARIÁVEL: é o conjunto de resultados possíveis de um fenômeno (ou observação, ou característica).

Para os fenômenos:

- sexo - dois resultados possíveis: masculino e feminino; (não pode ser medida: é um atributo)

- número de filhos tidos de um grupo de casais - resultados possíveis: 0, 1, 2, 3, 4, 5, ..., n;

- peso de pessoas adultas - resultados possíveis: 60 kg, 59,3 kg, 75,3 kg, 65,3 kg, ...; pode tomar um infinito número de valores num certo intervalo.

TIPOS DE VARIÁVEIS

1. Variável Qualitativa: quando seus valores são expressos pôr atributos ou qualidade.

Exemplos:

. População: Estudantes universitários do Estado do Pará.

Variáveis: sexo, profissão, escolaridade, religião, meio onde vivem (rural, urbano).

. População: População dos bairros periféricos do município de Belém

Variáveis: tipo de casa, existência de água encanada (sim, não), bairro de origem.

Variáveis qualitativas que não são ordenáveis recebem o nome de nominais.

Exemplo: religião, sexo, raça, cor.

Raça do Paraense - 2001

Raça Frequência

Branca

Negra

Parda

Outra

Total

Fonte: Fictícia

Variáveis qualitativas que são ordenáveis recebem o nome de ordinais.

Exemplo: nível de instrução, classe social.

Classe social do Paraense - 2001

Classe social Frequência

Classe A

Classe B

Classe C

Classe D

Total

Fonte: Fictícia

2. Variável Quantitativa: quando seus valores são expressos pôr números. Esses números podem ser obtidos pôr um processo de contagem ou medição.

Exemplos:

. População: Todos os agricultores do Estado do Pará.

Variáveis: número de filhos tidos, extensão da área plantada, altura, idade.

. População: População dos bairros periféricos do município de Belém

Variáveis: número de quartos, área da casa em m2, número de moradores da casa.

A VARIÁVEL QUANTITATIVA DIVIDI-SE EM:

a. Variável Discreta: são aquelas que podem assumir apenas valores inteiros em pontos da reta real. É possível enumerar todos os possíveis valores da variável.

Exemplos:

. População: Universitários do Estado do Pará.

Variáveis: número de filhos, número de quartos da casa, número de moradores, número de irmãos.

b. Variável Contínua: são aquelas que podem assumir qualquer valor num certo intervalo (contínuo) da reta real. Não é possível enumerar todos os possíveis valores. Essa variáveis, geralmente, provém de medições.

. População: Todos os agricultores do Estado do Pará.

Variáveis: idade, renda familiar; extensão da área plantada (em m2 ) , peso e altura das crianças agricultoras.

1.10. EXPERIMENTO ALEATÓRIO

São aqueles que, repetidos em idênticas condições, produzem resultados diferentes. Embora não se saiba qual o resultado que irá ocorrer num experimento, em geral, consegue-se descrever o conjunto de todos os resultados possíveis que podem ocorrer. As variações de resultados, de experimento para experimento, são devidas a uma multiplicidade de causas que não podemos controlar, as quais denominamos acaso.

Exemplos de Experimentos Aleatórios

a) Lançar uma moeda e observar a face de cima.

b) Lançar um dado e observar o número da face de cima.

c) Lançar duas moedas e observar as seqüências de caras e coroas obtidas.

d) Lançar duas moedas e observar o número de caras obtidas

e) De um lote de 80 peças boas e 20 defeituosas, selecionar 10 peças e observar o número de peças defeituosas.

f) De um baralho de 52 cartas, selecionar uma carta, e observar seu naipe.

g) Numa cidade onde10% dos habitantes possuem determinada moléstia, selecionar 20 pessoas e observar o número de portadores da moléstia.

h) Observar o tempo que um aluno gasta para ir de ônibus, de sua casa até a escola.

i) Injetar uma dose de insulina em uma pessoa e observar a qunatidade de açúcar que diminuiu.

j) Sujeitar uma barra metálica a tração e observar sua resistência.

FASES DO TRABALHO ESTATÍSTICO _____________________________________________________2

2.1. DEFINIÇÃO DO PROBLEMA

A primeira fase do trabalho estatístico consiste em uma definição ou formulação correta do problema a ser estudado e a seguir escolher a natureza dos dados. Além de considerar detidamente o problema objeto de estudo o analista deverá examinar outros levantamentos realizados no mesmo campo e análogos, uma vez que parte da informação de que necessita pode, muitas vezes, ser encontrada nesses últimos. Saber exatamente aquilo que pretende pesquisar é o mesmo que definir de maneira correta o problema.

Por exemplo:

- os preços dos produtos agrículas produzidos no Estado do Pará são menores do que àqueles originados de outros Estados?

- qual a natureza e o grau de relação que existe entre a distribuição da pluviosidade e a colheita do produto x?

- estudar uma população por sexo: dividi-se os dois grupos em masculino e feminino;

- estudar a idade dos universitários, por grupos de idade: distribui-se o total de casos conhecidos pelos diversos grupos etários pré-estabelecidos;

2.2. DEFINIÇÃO DOS OBJETIVOS (GERAL E ESPECÍFICO)

É definir com exatidão o que será pesquisado.

É recomendável ter em vista um objetivo para o estudo, em lugar de coletar o material e definí-lo no decorrer do trabalho ou só no fim deste.

OBJETIVOS MAIS COMUNS EM UMA PESQUISA:

. Dados pessoais: grau de instrução, religião, nacionalidade, dados profissionais, familiares, econômicos, etc.

. Dados sobre comportamento: como se comportam segundo certas circunstâncias. Ex: possível remanejamento da área habitada.

. Opiniões, expectativas, níveis de informação, angústias, esperanças, aspirações sobre certos assuntos.

. Dados sobre as condições habitacionais e de saneamento que avalie as condições em que vivem e a qualidade de vida de certo grupo.

2.3. PLANEJAMENTO

O problema está definido. Como resolvê-lo? Se através de amostra, esta deve ser significativa para que represente a população.

O planejamento consiste em se determinar o procedimento necessário para resolver o problema e, em especial, como levantar informações sobre o assunto objeto de estudo. Que dados deverão ser coletados? Como se deve obtê-los? É preciso planejar o trabalho a ser realizado tendo em vista o objetivo que se pretende atingir.

É nesta fase que será escolhido o tipo de levantamento a ser utilizado, que podem ser:

a) levantamento censitário, quando a contagem for completa, abrangendo todo o universo;

b) levantamento pôr amostragem, quando a contagem for parcial.

Outros elementos importantes que devem ser tratados nessa fase são o cronograma das atividades, através do qual são fixados os prazos para as várias fases, os custos envolvidos, o exame das informações disponíveis, o delineamento da amostra, a forma como serão coletados os dados, os setores ou áreas de investigação, o grau de precisão exigido e outros.

2.4. COLETA DOS DADOS

Refere-se a obtenção, reunião e registro sistemático de dados, com o objetivo determinado.

A escolha da fonte de obtenção dos dados está diretamente relacionada ao tipo do problema, objetivos do trabalho, escala de atuação e disponibilidade de tempo e recursos.

a) Fontes primárias: é o levantamento direto no campo através de mensurações diretas ou de entrevistas ou questionários aplicados a sujeitos de interesse para a pesquisa.

Vantagens: grau de detalhamento com respeito ao interesse dos quesitos levantados; maior precisão das informações obtidas.

b) Fontes secundárias: quando são publicados ou registrados pôr outra organização.

A coleta de dados secundários se realiza através de documentos cartográficos (mapas, cartas, imagens e fotografias obtidas por sesoriamento remoto ou por fotogrametria e imagens de radar). Estas fontes de informação são de extrema importância.

Das fotografias aéreas em escalas reduzidas ou mais detalhadas, das imagens de radas ou satélite e de cartas obtêm-se informações quanto ao uso do solo, drenagem, estruturas viárias e urbanas, povoamento rural, recursos florísticos, minerais e pedológicos, estrutura fundiária e de serviços, dados altimétricos, etc.

Vantagens: inclui um processo de redução e agregação de informações.

A coleta dos dados pode ser feita de forma direta ou indireta.

COLETA DIRETA

A coleta é dita direta, quando são obtidos diretamente da fonte primária, como os levantamentos de campo através de questionários.

Há três tipos de coleta direta:

a) a coleta é contínua quando os dados são obtidos ininterruptamente, automaticamente e na vigência de um determinado período: um ano, por exemplo. É o caso dos registros de casamentos, óbitos e nascimentos, escrita comercial, as construções civis.

b) a coleta dos dados é periódica quando feita em intervalos constantes de tempo, como o recenseamento demográfico a cada dez anos e o censo industrial, anualmente.

c) a coleta dos dados é ocasional quando os dados forem colhidos esporadicamente, atendendo a uma conjuntura qualquer ou a uma emergência, como por exemplo, um surto epidêmico.

COLETA INDIRETA

A coleta é dita indireta quando é inferida a partir dos elementos conseguidos pela coleta direta, ou através do conhecimento de outros fenômenos que, de algum modo, estejam relacionados com o fenômeno em questão.

Um instrumento por meio do qual se faz a coleta das unidades estatísticas é o questionário. Deve ficar bem claro no questionário, que ele é organizado de acordo com dispositivos legais, que há sansões e que o sigilo sobre as informações individuais será absoluto.

É aconselhável que um pequeno percentual dos exemplares do questionário seja tirado e aplicado a uma parcela de informantes, afim de testar a aceitação do mesmo, constituindo tal iniciativa, a pesquisa piloto. A boa aceitação dos questionários determinará a tiragem completa dos exemplares ou a sua alteração.

2.5. CRÍTICA DOS DADOS

A crítica dos dados deve ser feita com cuidado através de um trabalho de revisão e correção, ao qual chamamos de crítica (consistência), a fim de não de incorrer em erros que possam afetar de maneira sensível os resultados.

As perguntas dos questionários uniformemente mal compreendidas, os enganos evidentes, tais como somas erradas, omissões, trocas de respostas e etc, são fáceis de corrigir. É necessário, entretanto, que o crítico não faça a correção pôr simples suposição sua, mas sim que tenha chegado a conclusão absoluta do engano.

Quelet dividiu a crítica em: externa e interna.

A crítica externa refere-se as imperfeições porventura existentes na coleta dos dados, pôr deficiência do observador, pôr imperfeição do instrumento de trabalho, pôr erro de registro nas fichas, imprecisão nas respostas aos quesitos propostos e outros fatores de erro que justificam um verificação minuciosa dos dados coletados antes de iniciar a elaboração do trabalho de análise.

A crítica interna diz respeito a verificação da exatidão das informações obtidas. É mister examinar as respostas dadas, sanando imperfeições e omissões, de forma que os dados respondam com precisão aos quesitos formulados.

As informações relativas a profissão não devem ser vagas como, pôr exemplo: operário, mas sim, oleiro, pedreiro, carpinteiro, etc., conforme o caso.

O estado civil será declarado: solteiro, casado, viúvo ou desquitado.

Em resumo, os dados devem sofrer uma crítica criteriosa com o objetivo de afastar os erros tão comuns nessa natureza de trabalho. As informações inexatas ou omissas devem ser corrigidas. Os questionários devem voltar a fonte de origem sempre que se fizerem necessário sua correção ou complementação.

2.6. APURAÇÃO (ARMAZENAMENTO) DOS DADOS

É um processo de apuração ou sumarizaçãp que consiste em resumir os dados através de sua contagem ou agrupamento. É um trabalho de condensação e de tabulação dos dados, que chegam ao analista de forma desorganizada.

Através da apuração, têm-se a oportunidade de condensar os dados, de modo a obter um conjunto compacto de números, o qual possibilita distinguir melhor o comportamento do fenômeno na sua totalidade.

Os dados de fenômenos geográficos podem ser organizados em mapas, tabelas, matrizes, disquetes ou fitas.

2.7. EXPOSIÇÃO OU APRESENTAÇÃO DOS DADOS

Há duas formas de apresentação que não se excluem mutuamente:

Apresentação Tabular

É uma apresentação numérica dos dados. Consiste em dispor os dados em linhas e colunas distribuídos de modo ordenado, segundo algumas regras práticas adotadas pelo Conselho Nacional de Estatística. As tabelas têm a vantagem de conseguir expor, sistematicamente em um só local, os resultados sobre determinado assunto, de modo a se obter um visão global mais rápida daquilo que se pretende analisar.

Apresentação Gráfica

Constitui uma apresentação geométrica dos dados. Permite ao analista obter uma visão tão rápida, fácil e clara do fenômeno e sua variação.

2.8. ANÁLISE E INTERPRETAÇÃO DOS DADOS

Nessa etapa, o interesse maior consiste em tirar conclusões que auxiliem o pesquisador a resolver seu problema. A análise dos dados estatísticos está ligada essencialmente ao cálculo de medidas, cuja finalidade principal é descrever o fenômeno. Assim, o conjunto de dados a ser analisado pode ser expresso pôr número-resumo, as estatísticas, que evidenciam características particulares desse conjunto.

2.9. REGRAS DE ARREDONDAMENTO

De acordo com as Normas de Apresentação Tabular - 3ª edição/1993 - da Fundação IBGE, o arredondamento é feito da seguinte maneira:

1. Se o número que vai ser arredondado for seguido de 0, 1, 2, 3 ou 4 ele deve ficar inalterado.

Número a arredondar Arredondamento para Número arredondado

6,197 Inteiro

12,489 Inteiro

20,733 Décimos

35,992 Centésimos

2. Se o número que vai ser arredondado for seguido de 5, 6, 7, 8 ou 9 ele deve ser acrescido de uma unidade.

Número a arredondar Arredondamento para Número arredondado

15,504 Inteiro

21,671 Inteiro

16,571 Décimos

17,578 Centésimos

215,500 Inteiros

216,500 inteiros

216,750 décimos

216,705 centésimos

OBS: Não faça arredondamento sucessivos

Ex.: 17,3452 passa a 17,3 e não para 17,35 , para 17,4.

Se houver necessidade de um novo arredondamento, voltar aos dados originais.

NORMAS PARA APRESENTAÇÃO TABULAR DOS DADOS______________________________________3

3.1. INTRODUÇÃO

A apresentação tabular é uma apresentação numérica dos dados. Consiste em dispor os dados em linhas e colunas distribuídos de modo ordenado, segundo algumas regras práticas ditadas pelo Conselho /nacional de Estatística e pelo IBGE. Tais regras acham-se publicadas e dispõem sobre os elementos essenciais e complementares da tabela, a especificação dos dados e dos sinais convencionais, o procedimento correto a ser desenvolvido no preenchimento da tabela e outros dispositivos importantes.

As tabelas tem a vantagem de conseguir expor, sinteticamente e em um só local, os resultados sobre determinado assunto, de modo a se obter uma visão global mais rápida daquilo que se pretende analisar.

Reunindo, pois os valores em tabelas compactas, consegue-se apresentá-los e descrever-lhes a variação mais eficientemente. Essa condensação de valores permite ainda a utilização de representação gráfica, que normalmente representa uma forma mais útil elegante de apresentação da característica analisada.

3.2. SÉRIES ESTATÍSTICAS

Um dos objetivos da Estatística é sintetizar os valores que uma ou mais variáveis podem assumir, para que se tenha uma visão global dessa ou dessas variáveis. Isto é possível apresentando esses valores em tabelas e gráficos, que irão fornecer rápidas e seguras informações a respeito das variáveis em estudo, permitindo determinações mais coerentes.

TABELA é um quadro que resume um conjunto de observações.

Como construir uma tabela que forneça informações de forma precisa e correta:

1º passo: Começar pelo título, que explica o conteúdo da tabela.

2º passo: Fazer o corpo da tabela, composto pelos números e informações que ela contém. É formado por linhas e colunas.

Para compor o corpo da tabela, é necessário:

I) O cabeçalho, que indica o que a coluna contém. Deve estar entre traços horizontais, para melhor vizualização.

II) A coluna indicadora, que diz o que a linha contém

3º passo: Escrever o total (as tabelas podem apresentar um total ou não). Aparece entre traços horizontais.

4º passo: Coloque a fonte. Deve entrar no rodapé, sendo obrigatória.

Uma tabela compõem-se de:

Tabela 3.1

Produção de Café

Brasil - 1978-1983

Anos Quantidade

(1000 ton)

1978 (1) 2535

1979 2666

1980 2122

1981 3760

1982 2007

1983 2500

Fonte: Fictícia

Nota: Produção destinada para o consumo interno.

(1) Parte exportada para a Argentina.

Rodapé: fonte, chamadas e notas

Notas: é usada para conceituação ou esclarecimento em geral.

Chamadas: é usada para esclarecer certas minúcias em relação a casas, linhas e colunas.

De acordo com a Resolução 886 da Fundação IBGE, nas casas ou células, devemos colocar:

- um traço horizontal (___) quando o valor é zero, não só quanto a natureza das coisas, como quanto ao resultado do inquérito;

- três pontos (...) quando não temos os dados;

- um ponto de interrogação ( ? ) quando temos dúvida quanto a exatidão de determinado valor;

- zero ( 0 ) quando o valor é muito pequeno para ser expresso pela unidade utilizada. Se os valores são expressos em numerais decimais, precisamos acrescentar a parte decimal um número correspondente de zeros (0,0; 0,00; 0,00; ...).

Denomina-se SÉRIE ESTATÍSTICA toda tabela que apresenta a distribuição de um conjunto de dados estatísticos em função da ÉPOCA, do LOCAL, ou da ESPÉCIE (fenômeno).

Numa série estatística observa-se a existência de três elementos ou fatores: o TEMPO, o ESPAÇO e a ESPÉCIE.

Conforme varie um desses elementos, a série estatística classifica-se em TEMPORAL, GEOGRÁFICA e ESPECÍFICA.

3.3. SÉRIE TEMPORAL, HISTÓRICA OU CRONOLÓGICA

É a série cujos dados estão em correspondência com o tempo, ou seja, variam com o tempo.

Tabela 3.2

Produção Brasileira de Trigo

1988-1993

Anos Quantidade

(1000 ton)

1988 (1) 2345

1989 2451

1990 2501

1991 2204

1992 2306

1993 2560

Fonte: IBGE

Nota: Produção voltada para o consumo interno.

(1) Parte da produção exportada.

. Elemento variável: tempo (fator cronológico)

. Elemento fixo: local (fator geográfico) e o fenômeno (espécie)

3.4. SÉRIE GEOGRÁFICA, TERRITORIAL OU DE LOCALIDADE

É a série cujos dados estão em correspondência com a região geográfica, ou seja, o elemento variável é o fator geográfico (a região).

Tabela 3.3

Produção Brasileira de Trigo, por Unidade da Federação - 1994

Unidades da Federação Quantidade

(1000 ton)

São Paulo 670

Santa Catarina 451

Paraná 550

Goiás 420

Rio de Janeiro 306

Rio Grande do Sul 560

Fonte: Fictícia

. Elemento variável: localidade (fator geográfico)

. Elemento fixo: tempo e o fenômeno

3.5. SÉRIE ESPECÍFICA OU CATEGÓRICA

É a série cujos dados estão em correspondência com a espécie, ou seja, variam com o fenômeno.

Tabela 3.4

Rebanhos Brasileiros

Espécie Quantidade

(1000 cabeças)

Bovinos 140 000

Suínos 1 181

Bubalinos 5 491

Coelhos 11 200

Fonte: IBGE

. Elemento variável: fenômeno (espécie)

. Elemento fixo: local e o tempo

3.6. SÉRIES MISTAS

As combinações entre as séries anteriores constituem novas séries que são denominadas séries compostas ou mistas e são apresentadas em tabelas de dupla entrada.

Tabela 3.5

Exportação Brasileira de alguns produtos agrícolas - 1990 - 1992

Produto Quantidade

(1000 ton)

1990 1991 1992

Feijão 5600 6200 7300

Arroz 8600 9600 10210

Soja 4000 5000 6000

Fonte: Ministério da Agricultura

Nota: Produtos mais exportados no período.

Este exemplo se constitui numa Série Temporal-Específica

. Elemento variável: tempo e a espécie

. Elemento fixo: local

Obs: uma tabela nem sempre representa uma série estatística, pode ser um aglomerado de informações úteis sobre certo assunto.

Tabela 3.6

Situação dos espetáculos cinematográficos no Brasil - 1967

Especificação Quantidade

Número de cinemas 2.488

Lotação dos cinemas 1.722.348

Sessões pôr dia 3.933

Filme de longa metragem 131.330.488

Meia entrada 89.581.234

Fonte: Anuário Estatístico do Brasil - IBGE

OBSERVAÇÃO:

SÉRIE HOMÓGRADA

A Série homógrada é aquela em que a variável descrita apresenta variação discreta ou descontínua. São séries homógradas a série temporal, a geográfica e a específica.

SÉRIE HETERÓGRADA

A série heterógrada é aquela na qual o fenômeno ou fato apresenta gradações ou subdivisões. Embora fixo, o fenômeno varia em intensidade. A distribuição de freqüências ou seriação é uma série heterógrada.

REPRESENTAÇÃO GRÁFICA_____________________________________________________________4

1. INTRODUÇÃO

A Estatística Descritiva pode descrever os dados através de gráficos.

A apresentação gráfica é um complemento importante da apresentação tabular. A vantagem de um gráfico sobre a tabela está em possibilitar uma rápida impressão visual da distribuição dos valores ou das freqüências observadas. Os gráficos propiciam uma idéia inicial mais satisfatória da concentração e dispersão dos valores, uma vez que através deles os dados estatísticos se apresentam em termos de grandezas visualmente interpretáveis.

2. REQUISITOS FUNDAMENTAIS EM UM GRÁFICO:

a. Simplicidade: possibilitar a análise rápida do fenômeno observado. Deve conter apenas o essencial.

b. Clareza: possibilitar a leitura e interpretações correta dos valores do fenômeno.

c. Veracidade: deve expressar a verdade sobre o fenômeno observado.

3. TIPOS DE GRÁFICOS QUANTO A FORMA:

a. Diagramas: gráficos geométricos dispostos em duas dimensões. São mais usados na representação de séries estatísticas.

b. Cartogramas: é a representação sobre uma carta geográfica, sendo muito usado na Geografia, História e Demografia.

c. Estereogramas: representam volumes e são apresentados em três dimensões.

d. Pictogramas: a representação gráfica consta de figuras representativas do fenômeno. Desperta logo a atenção do público.

4. CLASSIFICAÇÃO DOS GRÁFICOS QUANTO AO OBJETIVO

a. Gráficos de informação

O objetivo é proporcionar uma visualização rápida e clara da intensidade das categorias ou dos valores relativos ao fenômeno. São gráficos tipicamente expositivos, devendo ser o mais completo possível, dispensando comentários explicativos.

CARACTERÍSTICAS:

- deve conter título em letra de forma;

- as legendas podem ser omitidas, desde que as informações presentes possibilite a interpretação do gráfico.

b. Gráficos de análise

Estes gráficos fornecem informações importantes na fase de análise dos dados, sendo também informativos.

Os gráficos de análise, geralmente, vêm acompanhado de uma tabela e um texto onde se destaca os pontos principais revelados pelo gráfico ou pela tabela.

5. PRINCIPAIS TIPOS DE GRÁFICOS

5.1. GRÁFICOS EM CURVAS OU EM LINHAS

São usados para representar séries temporais, principalmente quando a série cobrir um grande número de períodos de tempo.

Considere a série temporal:

Tabela 4.1

Produção de Arroz do Município X - 1984-1994

Anos Quantidade

(1000 ton)

1984 816

1985 904

1986 1.203

1987 1.147

1988 1.239

1989 1.565

1990 1.620

1991 1.833

1992 1.910

1993 1.890

1994 1.903

Fonte: Fictícia

7. GRÁFICOS EM COLUNAS

É a representação de uma série estatística através de retângulos, dispostos em colunas (na vertical) ou em retângulos (na horizontal). Este tipo de gráfico representa praticamente qualquer série estatística.

As regras para a construção são as mesmas do gráfico em curvas.

As bases das colunas são iguais e as alturas são proporcionais aos respectivos dados.

Exemplo: Tabela 4.2

Produção de Soja do Município X - 1991-1995

Anos Quantidade

(ton.)

1991 117.579

1992 148.550

1993 175.384

1994 220.272

1995 265.626

Fonte: Secretaria Municipal de Agricultura

Para cada ano é construído uma coluna, variando a altura (proporcional a cada quantidade). As colunas são separadas uma das outras.

Observação: O espaço entre as colunas pode variar de 1/3 a 2/3 do tamanho da base da coluna.

Uso do gráfico em colunas para representar outras séries estatísticas

Tabela 4.3

Áreas (Km2) das Regiões Fisiográficas - Brasil - 1966

Regiões Fisiográficas Área

(Km2)

Norte 3.581.180

Nordeste 965.652

Sudeste 1.260.057

Sul 825.621

Centro-oeste 1.879.965

Brasil 8.511.965

Fonte: IBGE.

Obs: Na tabela as regiões são apresentadas em ordem geográficas. No gráfico as colunas são ordenadas pela altura, da maior para a menor, da esquerda para a direita.

8. GRÁFICOS EM BARRAS

As alturas dos retângulos são iguais e arbitrárias e os comprimentos são proporcionais aos respectivos dados.

As barras devem ser separadas uma das outras pelo mesmo espaço de forma que as inscrições identifiquem as diferentes barras. O espaço entre as barras pode ser a metade (½) ou dois terços(2/3) de suas larguras.

As barras devem ser colocadas em ordem de grandeza de forma decrescente para facilitar a comparação dos valores. A categoria “outros” (quando existir) são representadas na barra inferior, mesmo que o seu comprimento exceda o de alguma outra.

Outra representação gráfica da Tabela 4.3:

Tabela 4.4

Matrícula efetiva no Ensino Superior, segundo os ramos de ensino -Brasil - 1995

Ramos de ensino Matrículas

Filosofia, Ciências e Letras 44.802

Direito 36.363

Engenharia 26.603

Administração e Economia 24.027

Medicina 17.152

Odontologia 6.794

Agricultura 4.852

Serviço Social 3.121

Arquitetura e Urbanismo 2.774

Farmácia 2.619

Demais ramos 11.002

Total 180.109

Fonte: Fictícia

OBS: Quando a variável em estudo for qualitativa e os nomes das categorias for extenso ou as séries forem geográficas ou específicas é preferível o gráfico em barras, devido a dificuldade em se escrever a legenda em baixo da coluna.

9. GRÁFICO EM COLUNAS MÚLTIPLAS (AGRUPADAS)

É um tipo de gráfico útil para estabelecer comparações entre as grandezas de cada categoria dos fenômenos estudados.

A modalidade de apresentação das colunas é chamado de Gráfico de Colunas Remontadas. Ele proporciona economia de espaços sendo mais indicado quando a série apresenta um número significativo de categorias.

Exemplo: Tabela 4.5

Entrada de migrantes em três Estados do Brasil - 1992-1994

Número de migrantes

Anos

Total Estados

Amapá São Paulo Paraná

1992 4.526 2.291 1.626 609

1993 4.633 2.456 1.585 592

1994 4.450 2.353 1.389 708

Fonte: Fictícia

10. GRÁFICO EM BARRAS MÚLTIPLAS (AGRUPADAS)

Útil quando a variável for qualitativa ou os dizeres das categorias a serem escritos são extensos.

Exemplo:

Tabela 4.6

Importação Brasileira de vinho e champanhe proveniente de várias origens - 1994

Países

Importação (1.000 dólares)

Vinho Champanhe

Portugal 220 15

Itália 175 25

França 230 90

Argentina 50 5

Chile 75 20

Espanha 110 16

Fonte: Fictícia

11. GRÁFICO EM SETORES

É a representação gráfica de uma série estatística em um círculo de raio qualquer, pôr meio de setores com ângulos centrais proporcionais às ocorrências.

É utilizado quando se pretende comparar cada valor da série com o total.

O total da série corresponde a 360 (total de graus de um arco de circunferência).

O gráfico em setores representam valores absolutos ou porcentagens complementares.

As séries geográficas, específicas e as categorias em nível nominal são mais representadas em gráficos de setores, desde que não apresentem muitas parcelas (no máximo sete).

Cada parcela componente do total será expressa em graus, calculada através de uma regra de três:

Total - 360

Parte - x

Exemplo:

Tabela 4.7

Produção Agrícola do Estado A - 1995

Produtos Quantidade (t)

Café 400.000

Açúcar 200.000

Milho 100.000

Feijão 20.000

Total 720.000

Fonte: Fictícia

Outras maneiras de representar graficamente a Tabela 4.7:

DISTRIBUIÇÃO DE FREQÜÊNCIAS__________________________________________________________5

1. INTRODUÇÃO

As tabelas estatísticas, geralmente, condensam informações de fenômenos que necessitam da coleta de grande quantidade de dados numéricos. No caso das distribuições de freqüências que é um tipo de série estatística, os dados referentes ao fenômeno objeto de estudo se repetem na maioria das vezes sugerindo a apresentação em tabela onde apareçam valores distinto um dos outros.

2. DISTRIBUIÇÃO DE FREQÜÊNCIA PARA DADOS AGRUPADOS

É a série estatística que condensa um conjunto de dados conforme as freqüências ou repetições de seus valores. Os dados encontram-se dispostos em classes ou categorias junto com as freqüências correspondentes. Os elementos época, local e fenômeno são fixos. O fenômeno apresenta-se através de gradações, ou seja, os dados estão agrupados de acordo com a intensidade ou variação quantitativa gradual do fenômeno.

3. REPRESENTAÇÃO DOS DADOS (AMOSTRAIS OU POPULACIONAIS)

a. Dados brutos: são aqueles que não foram numericamente organizados, ou seja, estão na forma com que foram coletados.

Tabela 5.1 - Número de filhos de um grupo de 50 casais

2 3 0 2 1 1 1 3 2 5

6 1 1 4 0 1 5 6 0 2

1 4 1 3 1 7 6 2 0 1

3 1 3 5 7 1 3 1 1 0

3 0 4 1 2 2 1 2 3 2

b. Rol: é a organização dos dados brutos em ordem de grandeza crescente ou decrescente.

Tabela 5.2 - Número de filhos de um grupo de 50 casais

0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 2

2 3 3 3 3 3 3 3 3 4

4 4 5 5 5 6 6 6 7 7

c. Distribuição de freqüências: é a disposição dos valores com as respectivas freqüências. O número de observações ou repetições de um valor ou de uma modalidade, em um levantamento qualquer, é chamado freqüência desse valor ou dessa modalidade. Uma tabela de freqüências é uma tabela onde se procura fazer corresponder os valores observados da variável em estudo e as respectivas freqüências.

c.1. Distribuição de freqüências para variável discreta

Os dados não são agrupados em classes.

Tabela 5.3 - Número de filhos de um grupo de 50 casais

Número de filhos ( x i ) Contagem ou tabulação Número de casais

( f i )

Total ()

Tabela 5.4 - Número de filhos de um grupo de 50 casais

Número de filhos

( x i ) Numero de casais

( f i )

Total ()

Obs: 1. X: representa a variável Número de filhos.

2. xi: representa os valores que a variável assume.

3. fi: é o número de vezes que cada valor aparece no conjunto de dados (freqüência simples absoluta).

4.  fi = 50

5. n: tamanho da amostra (ou nº de elementos observados).

6. N: tamanho da população (ou nº de elementos observados).

c.2. Distribuição de freqüências para variável contínua

Os dados da variável são agrupados em classe (grupo de valores).

1. Dados brutos

Tabela 5.5 - Taxas municipais de urbanização (em percentual) no Estado de Alagoas - 1970

8 24 46 13 38 54 44 20 17 14

18 15 30 24 20 8 24 18 9 10

38 79 15 62 23 13 62 18 8 22

11 17 9 35 23 22 37 36 8 13

10 6 92 16 15 23 37 36 8 13

44 17 9 30 26 18 37 43 14 9

28 41 42 35 35 42 71 50 52 17

19 7 28 23 29 29 58 77 72 34

12 40 25 7 32 34 22 7 44 15

9 16 31 30

2. Rol

Tabela 5.6 - Rol das taxas municipais de urbanização, no Estado de Alagoas (em %) - 1970.

6 6 7 7 7 8 8 8 8 9

9 9 9 9 10 10 11 12 13 13

13 13 14 14 14 15 15 15 15 16

16 17 17 17 17 18 18 18 18 19

20 20 22 22 22 23 23 23 23 24

24 24 25 26 28 28 29 29 30 30

30 31 32 34 34 34 35 35 35 36

37 37 38 38 40 41 42 42 43 44

44 44 46 50 52 54 58 62 62 71

72 77 79 92

3. Distribuição de freqüências para dados agrupados em classes

Tabela 5.7 - Taxas municipais de urbanização, no Estado de Alagoas (em %) - 1970.

Taxas (em %)

Número de

municípios( f i )

6 --- 16 29

16 --- 26 24

26 --- 36 16

36 --- 46 13

46 --- 56 4

56 --- 66 3

66 --- 76 2

76 --- 86 2

86 --- 96 1

Total () 94

Obs: 1.  f i : freqüência simples absoluta.

2.  f i = n = 94.

Obs 2: quando a variável objeto de estudo for contínua, recomenda-se agrupar os valores observados em classes. Se a variável for discreta e o número de valores observados for muito grande recomenda-se agrupar os dados em classes, evitando-se, com isso, grande extensão da tabela e a não interpretação dos valores de fenômeno.

4. ELEMENTOS DE UMA DISTRIBUIÇÃO DE FREQÜÊNCIA

a. Amplitude total (AT): é a diferença entre o maior e o menor valor observado.

No exemplo, tabela 17 - AT = 92 - 6 = 86

b. Freqüência simples absoluta (fi ): é o número de vezes que o elemento aparece na amostra, ou o número de elementos pertencentes a uma classe ( grupo de valores).

Ex: f 13 = 4 , f 1ª classe = 29

c. Classe: é cada um dos grupos de valores do conjunto de valores observados, ou seja, são os intervalos de variação da variável.

Identifica-se uma classe pêlos seus extremos ou pela ordem em que se encontra na tabela.

6 --- 16 (1ª classe) ; 86 --- 96 (7ª classe)

DETERMINAÇÃO DO NÚMERO DE CLASSES (K)

É importante que a distribuição conte com um número adequado de classes. Se o número de classes for excessivamente pequeno acarretará perda de detalhe e pouca informação se poderá extrair da tabela. Pôr outro lado, se forem utilizadas um número excessivo de classes, haverá alguma classe com freqüência nula ou muito pequena, não atingindo o objetivo de classificação que é tornar o conjunto de dados supervisionáveis.

Não há uma fórmula exata para determinar o número de classes. Três soluções são apresentadas abaixo:

1. Para n  25  K = 5, 2. Para n  25  K   94

Obs: o arredondamento é arbitrário.

2. Fórmula de Sturges: K  1 + 3,3 . log n

No Exemplo: n = 94, log 94 = 1,97313  K  1 + 3,3 . log 94  K  1 + 3,3 . 1,97313

 K  7,51  K  8

A fórmula de Sturges revela um inconveniente: propõem um número demasiado de classes para um número pequeno de observações e relativamente poucas classes, quando o total de observações for muito grande.

d. Intervalo de classe ou amplitude do intervalo de classe ( i ): é o comprimento da classe.

i  A T

K

Obs: convém arredondar o número correspondente à amplitude do intervalo de classe para facilitar os cálculos (arredondamento arbitrário).

Obs 2: Intervalo de classe: i = l s - l i

e. Limites de classes (limite inferior e limite superior): são os valores extremos de cada classes.

Seja a classe 6  16 - limite inferior ( l i ) = 6 e limite superior ( l s ) = 16.

Os valores 6 e 96, que representam, respectivamente, o limite inferior da 1ª e o superior da última classe, são denominados também limite inferior e limite superior da distribuição de freqüência.

É recomendável que os limites de classes sejam representados pôr números inteiros. Deve-se ter o cuidado para evitar interpretações ambíguas.

Pôr exemplo: 30 _____ 40

40 _____ 50

50 _____ 60

O correto é: : 30 _____ 39

40 _____ 49

50 _____ 59

caso os valores estiveram arredondados para inteiro. Entretanto, se os valores originais estiverem com precisão até centavos:

30,00 _____ 39,99

40,00 _____ 49,99

50,00 _____ 59,99

Em virtude de ordem estética, recomenda-se:

30 _____ 40

40 _____ 50

50 _____ 60

Limites reais

Dizemos que os limites indicados em cada linha de uma tabela de distribuição de freqüências são os limites reais quando o limite superior de cada classe coincide com o limite inferior da classe seguinte.

Veja o exemplo da Tabela 5.7, os limites são reais, cada limite superior de uma classe coincide com o limite inferior da classe seguinte.

Vale observar que o uso do símbolo ---- só é possível com os limites reais de classe.

Formas de expressar os limites das classes

1. 20 _____ 23: compreende todos os valores entre 20 e 23, inclusive os extremos.

2. 20 _____ 23: compreende todos os valores entre 20 e 23, excluindo o 23.

3. 20 _____ 23: compreende todos os valores entre 20 e 23, excluindo o 20.

4. 20 _____ 23: compreende todos os valores entre 20 e 23, excluindo os extremos.

f. Montagem da distribuição de freqüências para dados agrupados em classes

Tabela 5.8 - Taxas municipais de urbanização, no Estado de Alagoas (em %) - 1970.

Taxas (em %)

Número de

municípios( f i )

Total ()

g. Ponto médio das classes ( x i ): é o valor representativo da classe para efeito de cálculo de certas medidas. Para qualquer representação tabular, basta acrescentar ao seu limite inferior a metade da amplitude do intervalo de classe.

x i = i / 2 + l i

Exemplo: 6  16, i = 10  metade de i = 10/2 = 5  x i = 5 + 6 = 11

Quando o limite superior de uma classe for igual ao inferior da seguinte, o intervalo de classe poderá ser calculado através da média aritmética dos limites do intervalo.

Exemplo: 6  16 : x i = 6 + 16 = 11

2

Para obter os pontos médios das classes seguintes, basta acrescentar ao ponto médio da classe precedente a amplitude do intervalo de classe (se for constante).

5. TIPOS DE FREQÜÊNCIAS

a. Freqüência simples absoluta ( f i ): é o número de repetições de um valor individual ou de uma classe de valores da variável.

 f i = n

b. Freqüência simples relativa ( f r ): representa a proporção de observações de um valor individual ou de uma classe em relação ao número total de observações. Para calcular a freqüência relativa basta dividir a freqüência absoluta da classe ou do valor individual pelo número total de observações. É um valor importante para comparações.

f r = f i / n = f i /  f i

Para expressar o resultado em termos percentuais, multiplica-se o quociente obtido pôr 100.

f r = ( f i / n ). 100

A freqüência relativa é o resultado de uma regra de três simples:

n ------- 100% Exemplo: 94 ------ 100%

f i ------- x% 29 ------ x% x = 30,9 %

Obs 1: a soma das freqüências simples relativa de uma tabela de freqüência é sempre igual a 1,00 :  f r = 1,00.

Obs 2: a soma das freqüências relativas percentuais de uma tabela de freqüência é sempre igual a 100%:  f r = 100%.

6. DISTRIBUIÇÕES CUMULATIVAS

6.1. Freqüência absoluta acumulada “abaixo de” ( Fi )

A freqüência absoluta acumulada “abaixo de” uma classe ou de um valor individual é a soma das freqüências simples absoluta da classe ou de um valor com as freqüências simples absoluta das classes ou dos valores anteriores. A expressão “abaixo de” refere-se ao fato de que as freqüências a serem acumuladas correspondem aos valores menores ou anteriores ao valor ou à classe cuja freqüência acumulada se quer obter, incluindo no cálculo a freqüência do valor ou da classe. Quando se quer saber quantas observações existem até uma determinada classe ou valor individual, recorre-se à freqüência acumulada “abaixo”.

6.2. Freqüência relativa acumulada “abaixo de” ( F r )

A freqüência relativa acumulada da classe ou do valor individual i é igual a soma da freqüência simples relativa da classe ou do valor individual com as freqüências simples relativas das classes ou dos valores anteriores. As freqüências relativas acumuladas podem ser obtidas de duas formas:

1. Acumulando as freqüências simples relativas de acordo com a definição de freqüências acumuladas.

2. Calculando as freqüências relativas diretamente a partir das freqüências absolutas de acordo com a definição de freqüências relativas:

F r = F i / n

6.3. Freqüência Acumulada “Acima de”

b.1. Freqüência absoluta acumulada “acima de” ( Fj )

A freqüência absoluta acumulada “acima de” uma classe ou de um valor individual representa o número de observações existentes além do valor ou da classe, incluindo no cálculo as observações correspondentes a esse valor ou a essa classe. Para obter a freqüência absoluta acumulada “acima de”, soma-se à freqüência simples absoluta da classe ou do valor individual as freqüências simples absolutas das classes ou dos valores individuais posteriores.

b.2. Freqüência relativa acumulada “acima de” ( FR )

A freqüência relativa acumulada “acima de” uma classe ou do valor individual j é igual à soma da freqüência simples relativa da classe ou do valor individual com as freqüências simples relativas das classes ou dos valores posteriores. Pode-se obter as freqüências relativas acumuladas “acima de” a partir da:

1. definição de freqüências acumuladas;

2. definição de freqüências relativas.

Vamos trabalhar, agora, com as seguintes variáveis:

1) Considere a variável número de filhos do sexo masculino de 34 famílias com 4 filhos cada uma.

0

2

3

4 0

2

3

4 1

2

3

4 1

2

3 1

2

3 1

2

3 1

2

3 1

2

3 2

3

3 2

3

3

Distribuição de freqüência sem classes por se tratar de uma Variável Discreta.

Tabela 1- Número de filhos do sexo masculino de 34 famílias com 4 filhos cada uma.

Número

meninos

( x i ) Número de família

( f i )

fr%

Fi

Fr%

Fj

FR%

Xi

Xi2.fi

0

1

2

3

4

Total ()

2) Considere a estatura (em cm) de 40 alunos do Colégio B.

150

156

161

164 151

156

161

165 152

157

161

166 153

158

161

167 154

158

162

168 155

160

162

168 155

160

163

169 155

160

163

170 155

160

164

172 156

160

164

173

Distribuição de freqüências com classes por se tratar de uma Variável Continua.

Tabela 2- Estatura (em cm) de 40 alunos do Colégio B.

Estatura

(em cm) Número de alunos

(f i)

xi

fr%

Fi

Fr%

Fj

FR%

xi2

Xi2.fi

150 -- 154

154 – 158

158 – 162

162 – 166

166 – 170

170 -- 174 4

9

11

8

5

3

Total () 40

HISTOGRAMA E POLÍGONO DE FREQUÊNCIAS_______________________________________________6

6.1. HISTOGRAMAS

São gráficos de superfícies utlizados para representar distribuições de frequências com dados agrupados em classes.

O histograma é composto por retângulos (denominados células), cada um deles representando um conjunto de valores próximos (as classes).

A largura da base de cada célula deve ser proporcional à amplitude do intervalo da classe que ela representa e a área de cada célula deve ser proporcional à frequência da mesma classe.

Se todas as classes tiverem igual amplitude, então as alturas dos retângulos serão proporcionais às frequências das classes que eles representam.

Considere o histograma obtido a partir da Tabela 2:

Tabela 2 - Taxas municipais de urbanização, no Estado de Alagoas (em %) - 1970.

Taxas (em %)

Número de

municípios( f i ) Percentual

6 --- 16 29 30,9

16 --- 26 24 25,5

26 --- 36 16 17,0

36 --- 46 13 13,8

46 --- 56 4 4,3

56 --- 66 3 3,2

66 --- 76 2 2,1

76 --- 86 2 2,1

86 --- 96 1 1,1

Total () 94 100,0

6.2. POLÍGONO DE FREQUÊNCIAS

O polígono de freqüências é o gráfico que obtemos unindo pontos dos lados superiores dos retângulos superiores dos retângulos de um histograma por meio de segmentos de reta consecutivos.

Na Tabela 5.7, temos:

Tabela 5.7 - Taxas municipais de urbanização, no Estado de Alagoas (em %) - 1970.

Taxas (em %)

Número de

municípios( f i ) Percentual

6 --- 16 29 30,9

16 --- 26 24 25,5

26 --- 36 16 17,0

36 --- 46 13 13,8

46 --- 56 4 4,3

56 --- 66 3 3,2

66 --- 76 2 2,1

76 --- 86 2 2,1

86 --- 96 1 1,1

Total () 94 100,0

MEDIDAS DE POSIÇAO (MEDIDAS DE TENDÊNCIA CENTRAL)__________________________________7

As distribuições de frequências para variáveis discretas e contínuas descrevem os grupos que uma variável pode assumir. É possível visualizar a concentração de valores de uma distribuição de frequências. Se se localizam no início, no meio ou no final, ou se distribuem de forma igual.

As medidas de posição são números que resumem e representam características importantes da distribuição de frequências e podem apresentar-se de várias formas, dependendo daquilo que se pretende conhecer a respeito dos dados.

As medidas de posição são chamadas de medidas de tendência central, devido à tendência de os dados observados se concentrarem em torno desses valores centrais que se localizam em torno do meio ou centro de uma distribuição.

As medidas (número-resumo) mais usadas para representar um conjunto de dados são a média, a moda e a mediana.

1. Média aritmética

1.1. Média aritmética – para dados não-agrupados (ou dados simples)

Seja X uma variável que assume os valores x1, x2, x3 ,..., xn. A média aritmética simples de X, representada por x, é definida por:

x1 + x2 + x3 + ... + xn  xi

x = ------------------------------- ou x = -------

n n

xi : são os valores que a variável X assume

n: número de elementos da amostra observada

Exemplo: A produção leiteira diária da vaca B, durante uma semana, foi de 10, 15, 14, 13, 16, 19, e 18 litros. Determinar a produção média da semana (a média aritmética).

xi 10 + 15 + 14 + 13 + 16 + 19 + 18

x = ---------  x = ---------------------------------------------- = 15 litros

n 7

1.2. Média aritmética – para dados agrupados

Se os valores da variável forem agrupados em uma distribuição de freqüências será usada a média aritmética dos valores x1, x2, x3 ,..., xn ponderadas pelas respectivas frequências absolutas: f1, f2, f3 ,..., fn.

 xi . ƒi

x = ------------ , onde:

n

xi : valores observados da variável ou ponto médio das classes

ƒi: freqüência simples absoluta

ƒi = n : número de elementos da amostra observada

A fórmula acima será usada para as distribuições de freqüências sem classes e com classes.

1.2.1. Média aritmética para dados agrupados sem classes (Média aritmética ponderada)

(Dados sem classes): Determinar a média aritmética da Tabela 5.4

Tabela 5.4 - Número de filhos de um grupo de 50 casais

Número de filhos

( xi ) Numero

de casais

( fi )

xi . ƒi

 xi . ƒi 117

x = ----------- = ------ = 2,34

n 50

x = 2,3 filhos

0 6

1 16

2 9

3 8

4 3

5 3

6 3

7 2

Total () 50

Os 50 casais possuem, em média 2,3 filhos.

1.2.2. Média aritmética para dados agrupados com classes intervalares

(Dados com classes): Determinar a média aritmética da Tabela 5.7

Tabela 5.7 - Taxas municipais de urbanização, no Estado de Alagoas(em %) 1970.

Taxas (em %)

Número de

Municípios

( fi )

xi

xi . ƒi

6 --- 16 29

16 --- 26 24

26 --- 36 16

36 --- 46 13

46 --- 56 4

56 --- 66 3

66 --- 76 2

76 --- 86 2

86 --- 96 1

Total () 94

 xi . ƒi

x = ------------ = ----------  x =

n

1.3. Propriedades da média aritmética

1ª propriedade

A soma algébrica dos desvios em relação à média é zero (nula).

 di =  (xi - x ) = 0

onde: di são as distâncias ou afastamentos da média.

Em uma distribuição simétrica será igual a zero e tenderá a zero se a distribuição for assimétrica.

Idades ( xi ) di = xi - x

2 d1 = 2 – 6 = -4

4 d2 = 4 – 6 = -2

6 d3 = 6 – 6 = 0

8 d4 = 8 – 6 = +2

10 d5 = 10 – 6 = +4

 0

2 + 4 + 6 + 8 + 10

x = ------------------------------- = 6

5

2ª propriedade

Somando-se ou subtraindo-se uma constante (c) a todos os valores de uma variável, a média do conjunto fica aumentada ou diminuída dessa constante.

Somar o valor 2 aos dados da tabela e calcular a nova média

Idades ( xi ) xi + 2

2 2 + 2 = 4

4 4 + 2 = 6

6 6 + 2 = 8

8 8 + 2 = 10

10 10 + 2 = 12

 40

A nova média será: 40

x = ------ = 8. No caso, a média aritmética anterior ficou aumentada de 2.

5

3ª propriedade

Multiplicando-se ou dividindo-se todos os valores de uma variável por uma constante (c), a média do conjunto fica multiplicada ou dividida por essa constante:

Multiplicar o valor 2 aos dados da tabela e calcular a nova média

Idades ( xi ) xi x 2

2 2 x 2 = 4

4 4 x 2 = 8

6 6 x 2 = 12

8 8 x 2 = 16

10 10 x 2 = 20

 60

A nova média será: 60

x = ------ = 12. No caso, a média aritmética anterior ficou multiplicada por 2.

5

4ª propriedade

A média das médias é a média global de 2 ou mais grupos.

x1 = 10 n1 = 15

x2 = 18 n2 = 23

Então: (x1 . n1 ) + (x2 . n2 ) + ... + (xk . nk )

xG = ---------------------------------------------------

n1 + n2 + .... + nk

(10 . 15 ) + (18 . 23 )

xG = -------------------------------- = 14,84

15 + 23

5ª propriedade

A soma dos quadrados dos afastamentos contados a partir da média aritmética é um mínimo.

Idades ( xi ) di = (xi – x)  di2 =  (xi – x)2

2 d1 = 2 – 6 = -4 (– 4)2 = 16

4 d2 = 4 – 6 = -2 (– 2)2 = 4

6 d3 = 6 – 6 = 0 ( 0)2 = 0

8 d4 = 8 – 6 = +2 ( +2)2 = 4

10 d5 = 10 – 6 = +4 ( +4)2 = 16

 0 40

De modo que:  (xi – x)2 = 40 sendo este valor o menor possível. Isso significa que, se tomássemos outro valor que não a média (x), o resultado dessa operação seria maior que o obtido.

6ª propriedade

A média aritmética é atraída pelos valores extremos.

Considere os valores originais:

xi : 2, 4, 6, 8, 10  x = 6

Se o primeiro valor xi for alterado para 0:

xi : 0, 4, 6, 8, 10  x = 5,6

Se o último valor xi for alterado para 12:

xi : 2, 4, 6, 8, 12  x = 6,4

3. Moda (Mo)

Também chamada de norma, valor dominante ou valor típico.

Defini-se a moda como o valor que ocorre com maior frequência em conjunto de dados.

Exemplo: Se o salário modal dos empregados de uma empresa é igual a mil reais, este é o salário recebido pela maioria dos empregados dessa empresa.

A moda é utilizada frequentemente quando os dados estão registrados na escala nominal.

Exemplo: Sexo dos alunos – Turma A – Escola Z

Sexo Freqüência

Masculino 40

Feminino 60

Total 100

A moda é sexo feminino porque tem maior freqüência.

3.1. Moda – para dados não agrupados

Primeiramente os dados devem ser ordenados para , em seguida, observar o valor que tem maior freqüência.

Exemplo: Calcular a moda dos seguintes conjuntos de dados:

1. X = (4, 5, 5, 6, 6, 6, 7, 7, 8, 8)  Mo = 6 (0 valor mais freqüente)

Esse conjunto é unimodal, pois apresenta apenas uma moda.

2. Y = (1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6)  Mo = 2 e Mo = 4 (valores mais freqüentes)

Esse conjunto é bimodal, pois apresenta duas modas.

3. Z = (1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5)  Mo = 2, Mo = 3 e Mo = 4 (valores mais freqüentes)

Esse conjunto é plurimodal, pois apresenta mais de duas modas.

4. W = (1, 2

...

Baixar como  txt (64 Kb)  
Continuar por mais 50 páginas »