Falhas Em Uma Estrutura Metalica
Trabalho Universitário: Falhas Em Uma Estrutura Metalica. Pesquise 861.000+ trabalhos acadêmicosPor: 050505005 • 15/9/2013 • 1.160 Palavras (5 Páginas) • 1.141 Visualizações
ETAPA 02
PASSO 1 (Equipe)
Determinar uma expressão para o potencial elétrico em função da distancia r a partir do eixo do cano. (O potencial é zero na parede do cano, que está ligado a terra).
V=(K.Q)/R
Passo 2 (Equipe)
Calcular a diferença de potencial elétrico entre o eixo do cano e a parede interna para uma densidade volumétrica de cargas típica, Q = 1,1 x 10⁻³ C/m3.
V eixo = -ρ . r22 . ε0 → -1,1.10-3 . 0,0522 . 8,85.10-12 = -2,75.10-617,7.10-12 =-0,155.106 = -1,55.105
V parede=0
DV= V eixo –V parede→-1,55.105-0= -1,55.105JC
Passo 3 (Equipe)
Determinar a energia armazenada num operário, considerando que o homem pode ser modelado por uma capacitância efetiva de 200 pF e cada operário possui um potencial elétrico de 7,0 kV em relação a Terra, que foi tomada como potencial zero.
C = Q/█(V @) → Q = C.V
Q = 200×10-12×7,0×103
Q = 1,4×10-6C
Q = 1,4 µC
Passo 4 (Equipe)
Verificar a possibilidade de uma explosão, considerando a segunda condição, ou seja, a energia da centelha resultante do passo anterior ultrapassou 150 mJ, fazendo com que o pó explodisse?
Resp.: De acordo com os resultados obtidos no passo anterior, foi analisado e concluído que a energia gerada não é suficiente para que a centelha seja gerada.
Etapa 3
Passo 1 (EQUIPE)
Determinar a expressão para a corrente i (o fluxo das cargas elétricas associadas ao pó) em uma seção reta do cano. Calcular o valor de i para as condições da fábrica: raio do cano R = 5,0 cm velocidade v = 2,0 m/s e densidade de cargas Q = 1,1 x 10-3 C/m3
Resolução:
I = Q/∆t ∆t=d/v
∆t=(5x〖10〗^(-2))/2
∆t=2.5x〖10〗^(-2)s
i = ( 1.1 x 〖10〗^(-3))/(2.5x〖10〗^(-2) ) i =〖 4.4 x 10〗^(-2) A
Passo 2 (Equipe)
Determinar a taxa (potência) com a qual a energia pode ter sido transferida do pó para uma centelha quando o pó deixou o cano. Considerar que quando o pó saiu do cano e entrou no silo, o potencial elétrico do pó mudou e o valor absoluto dessa variação foi pelo menos igual a diferença de potencial calculada no passo 2 na etapa 2.
P= U.i→P=-1,55.105 . 1,7.10-5=2,64W
Passo 3 (Equipe)
Calcular a energia transferida para a centelha se uma centelha ocorreu no momento em que o pó deixou o tubo e durou 0,20 s (uma estimativa razoável).
E=P. ∆t →2,64 . 0,20=0,53 J
Passo 4 (Equipe)
O campo magnético da Terra é como o campo magnético de um gigantesco ímã em forma de barra, mas essa semelhança é superficial. O campo magnético de um ímã de barra, ou qualquer outro tipo de ímã permanente, é criado pelo movimento coordenado de elétrons (partículas negativamente carregadas) dentro dos átomos de ferro. Já campo magnético da Terra atravessa desde o Pólo Sul até o Pólo Norte do planeta, que nos protege do constante bombardeamento de partículas carregadas provenientes da coroa solar, o campo magnético deflete as partículas em torno da Terra, protegendo-a. Mas é importante lembrar que o Pólo Norte Magnético da Terra tem uma inclinação de 11,5° em relação ao Pólo Norte Geográfico. Existe pelo menos outro fato interessante em relação ao campo magnético terrestre: este inverte periodicamente a sua polaridade. Ou seja, os pólos magnéticos não coincidem com os pólos geográficos. É o que mostra a primeira figura abaixo. Lembremos também que o Pólo Norte Geográfico também é inclinado em relação à linha perpendicular ao plano da órbita da Terra.
Uma das teorias mais aceitas a respeito da origem do campo magnético da Terra é a de que o nosso planeta possui um núcleo externo líquido constituído por ferro e níquel que se encontra em movimento. O movimento destes metais fundidos origina um campo elétrico no interior do núcleo que por sua vez origina o campo magnético terrestre. O núcleo da Terra, no entanto, é mais quente que 1043 K, a temperatura de Curie em que a orientação dos orbitais do elétron dentro do ferro se torna aleatória. Tal aleatorização tende a fazer a substância perder o seu campo magnético.
Estrutura e interna da Terra
Portanto, o campo magnético da Terra não é causado por depósitos magnetizados de ferro, mas em grande parte por correntes elétricas do núcleo externo líquido. Correntes elétricas induzidas na ionosfera também geram campos magnéticos. Tal campo é sempre gerado perto de onde a atmosfera é mais próxima do Sol, criando alterações diárias que podem deflectir campos magnéticos superficiais de até um grau.
O
...