TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Gráficos

Resenha: Gráficos. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  15/11/2014  •  Resenha  •  691 Palavras (3 Páginas)  •  250 Visualizações

Página 1 de 3

Relatório 4 - Grafos Os grafos são geralmente representados graficamente da seguinte maneira: é desenhado um círculo para cada vértice, e para cada aresta é desenhado um arco conectando suas extremidades. Se o grafo for direcionado, seu sentido é indicado na aresta por uma seta.

Note que essa representação gráfica (o layout) não deve ser confundida com o grafo em si (a estrutura abstrata, não-gráfica). Vários diferentes layouts podem corresponder ao mesmo grafo.2 O que importa é quais vértices estão conectados entre si por quantas arestas.

O grafo de exemplo exibido à direita é um grafo simples com o conjunto de vértices V = {1, 2, 3, 4, 5, 6} e um conjunto de arestas E = { {1,2}, {1,5}, {2,3}, {2,5}, {3,4}, {4,5}, {4,6} } (com o mapeamento w sendo a identidade).

Uma aresta conecta dois vértices; esses dois vértices são ditos como incidentes à aresta. A valência (ou grau) de um vértice é o número de arestas incidentes a ele, com loops contados duas vezes. No grafo de exemplo os vértices 1 e 3 possuem uma valência de 2, os vértices 2, 4 e 5 têm a valência de 3 e o vértice 6 tem a valência de 1. Se E é finito, então a valência total dos vértices é o dobro do número de arestas. Em um dígrafo, distingue-se o grau de saída (o número de arestas saindo de um vértice) e o grau de entrada (o número de arestas entrando em um vértice). O grau de um vértice é igual à soma dos graus de saída e de entrada.

Dois vértices são considerados adjacentes se uma aresta existe entre eles. No grafo acima, os vértices 1 e 2 são adjacentes, mas os vértices 2 e 4 não são. O conjunto de vizinhos de um vértice consiste de todos os vértices adjacentes a ele. No grafo-exemplo, o vértice 1 possui 2 vizinhos: vértice 2 e vértice 5. Para um grafo simples, o número de vizinhos de um vértice é igual à sua valência.

Na computação, um grafo finito direcionado ou não-direcionado (com, digamos, n vértices) é geralmente representado por sua matriz de adjacência: uma matriz n-por-n cujo valor na linha i e coluna j fornece o número de arestas do i-ésimo ao j-ésimo vértices.

Se for possível estabelecer um caminho de qualquer vértice para qualquer outro vértice de um grafo, diz-se que o grafo é conexo. Se for sempre possível estabelecer um caminho de qualquer vértice para qualquer outro vértice mesmo depois de remover k-1 vértices, então diz-se que o grafo está k-conexo. Note que um grafo está k-conexo se, e somente se, contém k caminhos independentes entre qualquer par de vértices. O grafo de exemplo acima é conexo (e portanto 1-conexo), mas não é 2-conexo.

Em um grafo genérico G, o corte associado a um conjunto X de vértices é o conjunto de todas as arestas que têm uma ponta em X e outra em V(G) - X, onde V(G) é o conjunto de todos os vértices pertencentes ao grafo G.

Tipos de Grafos:

Grafo simples é um grafo não direcionado, sem laços e que existe no máximo uma aresta entre quaisquer dois vértices (sem arestas paralelas). No grafo de exemplo, (1, 2, 5, 1, 2, 3) é um caminho com comprimento 5, e (5, 2, 1) é um caminho simples de comprimento 2.

Grafo completo é o grafo simples em que, para cada vértice do grafo, existe uma aresta conectando este vértice a cada um dos demais. Ou seja, todos os vértices do grafo possuem mesmo grau. O grafo completo de n vértices

...

Baixar como (para membros premium)  txt (4 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com