MATEMÁTICAS FINANCEIRAS - ESQUEMAS DE CAPITALIZAÇÃO SIMPLES E COMPOSTOS
Tese: MATEMÁTICAS FINANCEIRAS - ESQUEMAS DE CAPITALIZAÇÃO SIMPLES E COMPOSTOS. Pesquise 861.000+ trabalhos acadêmicosPor: jake123 • 18/9/2014 • Tese • 863 Palavras (4 Páginas) • 276 Visualizações
MATEMÁTICA FINANCEIRA – REGIMES DE CAPITALIZAÇÃO SIMPLES E COMPOSTA A matemática financeira pode ser a maior ferramenta na tomada de decisões no nosso dia a dia, uma vez que o mercado está estruturado para vender cada vez mais rápido e nem sempre as operações são claras e bem explicadas, o que faz com que, em certas situações, o consumidor não saiba decidir o que é melhor para ele. Deste modo, ela é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos de bens de consumo. Trata-se de empregar procedimentos matemáticos para simplificar a operação financeira. Dentro da matemática financeira temos os juros, remuneração pelo empréstimo do dinheiro. Ele existe porque a maioria das pessoas prefere o consumo imediato e está disposta a pagar um preço por isto. Por outro lado, quem for capaz de esperar até possuir a quantia suficiente para adquirir seu desejo, se estiver disposta a emprestar esta quantia a alguém, menos paciente, deve ser recompensado por esta abstinência na proporção do tempo e risco, que a operação envolver. O tempo, o risco e a quantidade de dinheiro disponível no mercado para empréstimos definem qual deverá ser a remuneração, mais conhecida como taxa de juros. Sendo usados os juros simples, que se concentra na aplicação direta dos conceitos mais básicos da matemática, e quando o percentual de juros incidirem apenas sobre o valor principal do empréstimo, e juros compostos que também é usada a tese de pagar juros no valor emprestado, somente com uma diferença muito importante: o valor inicial deve ser corrigido período a período, sendo comum tanto nos juros simples e composto as fórmulas, os valores de juros, o valor futuro e a capitalização. Outro ponto importante da matemática financeira é o desconto, que deve ser entendido como a diferença entre o valor futuro (valor nominal) de um título e seu valor presente (valor atual) quando o mesmo é negociado antes do vencimento. O desconto é denominado simples quando é obtido através de cálculos lineares. O conceito de desconto no regime de capitalização composta é idêntico ao do regime de juros simples: corresponde ao abatimento por saldar-se um compromisso antes do seu vencimento. Ou seja, desconto é o cálculo da diferença entre o valor nominal e o valor atual do compromisso na data em que se propõe que seja efetuado o desconto. Para os cálculos da capitalização simples (quando a taxa de juros incide sobre o capital inicial, por um determinado período de tempo) temos as seguintes fórmulas: Valor do juro simples – J => Valor do montante simples – FV => Valor Presente – PV => Cálculo da taxa de juros simples – i => No regime de capitalização composta, os juros produzidos num período serão acrescidos ao valor inicial (principal) e no próximo período também produzirão juros, formando o chamado “juros sobre juros”. A capitalização composta caracteriza-se por uma função exponencial, onde o capital cresce de forma geométrica. Assim, se a capitalização for mensal significa que a cada mês os juros são incorporados ao capital para formar nova base de cálculo do período seguinte. Por exemplo: você pega de um amigo R$ 1.000,00 para pagar daqui a cinco meses. Se o regime de capitalização for de juros compostos e a taxa combinada for de 10% ao mês, quanto você pagará a seu amigo? F n = p x (1+i) n f 1 = 1.000 x (1,10) = 1.100
...