Passo 1 Et 1 Mat Financeira
Pesquisas Acadêmicas: Passo 1 Et 1 Mat Financeira. Pesquise 862.000+ trabalhos acadêmicosPor: nataliasanches • 23/11/2014 • 787 Palavras (4 Páginas) • 271 Visualizações
Conceitos fundamentais
A matemática financeira é um corpo de conhecimento que estuda a mudança de valor do dinheiro com o decurso de tempo; para isso cria modelos que permitem comparar e avaliar o valor do dinheiro em diversos pontos do tempo. Para iniciar o seu estudo, é necessário que se estabeleça uma linguagem própria para designar os diversos elementos que serão estudados e que esses elementos sejam contextualizados com precisão. Os elementos básicos do estudo da disciplina serão inicialmente vistos através de uma situação pratica para, na sequencia, defini-los.
1.1 Capitalização Simples
1.2 Conceito
No regime de capitalização simples, os juros são calculados sempre sobre o valor inicial, não ocorrendo qualquer alteração da base de cálculo durante o período de cálculo dos juros. Na modalidade de juros simples, a base de cálculo é sempre o Valor Atual ou Valor Presente (PV), enquanto na modalidade de desconto bancário a base de cálculo é sempre o valor nominal do título (FV). O regime de capitalização simples representa, portanto, uma equação aritmética, sendo que o capital cresce de forma linear, seguindo uma reta; logo, é indiferente se os juros são pagos periodicamente ou no final do período total. O regime de capitalização simples é muito utilizado em países com baixo índice de inflação e custo real do dinheiro baixo; no entanto, em países com alto índice de inflação ou custo financeiro real elevado, a exemplo do Brasil, a utilização de capitalização simples só é recomendada para aplicações de curto prazo. A capitalização simples, porém, representa o início do estudo da matemática financeira, pois todos os estudos de matemática financeira são oriundos de capitalização simples. (KUHNEN, 2008).
1.3 Juros Simples
No regime de juros simples, os juros de cada período são sempre calculados em função do capital inicial (principal) aplicado. Os juros do período não são somados ao capital para o cálculo de novos juros nos períodos seguintes. Os juros não são capitalizados e, conseqüentemente, não rendem juros. Assim, apenas o principal é que rende juros. (PUCCINI, 2004).
2.0 Capitalização Composta
No regime de capitalização composta, os juros produzidos num período serão acrescidos ao valor aplicado e no próximo período também produzirão juros, formando o chamado “juros sobre juros”. A capitalização composta caracteriza-se por uma função exponencial, em que o capital cresce de forma geométrica. O intervalo após o qual os juros serão acrescidos ao capital é denominado “período de capitalização”; logo, se a capitalização for mensal, significa que a cada mês os juros são incorporados ao capital para formar nova base de cálculo do período seguinte. É fundamental, portanto, que em regime de capitalização composta se utilize a chamada “taxa equivalente”, devendo sempre a taxa estar expressa para o período de capitalização, sendo que o “n” (número de períodos) represente sempre o número
...