TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

A História Do Pi

Monografias: A História Do Pi. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  17/3/2015  •  669 Palavras (3 Páginas)  •  200 Visualizações

Página 1 de 3

A História do Pi

Os egípcios sabiam trabalhar muito bem com razões. Descobriram logo que a razão entre o comprimento de uma circunferência e o seu diâmetro é a mesma para qualquer circunferência, e o seu valor é um número "um pouquinho maior que 3".

É essa razão que hoje chamamos pi.

Considerando c o comprimento de uma circunferência e d o diâmetro, temos:

c/d = pi

c = pi . d

O cálculo do valor exato de pi ocupou os matemáticos por muitos séculos.

Para chegar ao valor de pi expresso por 3 1/6, que é aproximadamente 3,16, os egípcios há 3 500 anos partiram de um quadrado inscrito em uma circunferência, cujo lado media 9 unidades. Dobraram os lados do quadrado para obter um polígono de 8 lados e calcularam a razão entre os perímetros dos octógonos inscrito e circunscrito e o diâmetro da circunferência.

Os egípcios conseguiram uma aproximação melhor que a dos babilônios, para os quais "o comprimento de qualquer circunferência era o triplo de seu diâmetro", o que indicava o valor 3 para pi.

Por volta do século III a.C., Arquimedes - o mais famoso matemático da Antiguidade, que viveu e morreu em Siracusa, na Grécia - também procurou calcular a razão entre o comprimento de uma circunferência e o seu diâmetro.

Começando com um hexágono regular, Arquimedes calculou os perímetros dos polígonos obtidos dobrando sucessivamente o número de lados até chegar a um polígono de 96 lados.

Calculando o perímetro desse polígono de 96 lados, conseguiu para pi um valor entre 3 10/71 e 3 10/70. Ou seja, para Arquimedes pi era um número entre 3,1408 e 3,1428.

Com um polígono de 720 lados inscrito numa circunferência de 60 unidades de raio, Ptolomeu, que viveu em Alexandria, no Egito, por volta do século III d.C., conseguiu calcular o valor de pi como sendo 377/120, que é aproximadamente igual a 3,1416, uma aproximação ainda melhor que a de Arquimedes.

O fascínio pelo cálculo do valor exato de pi também tomou conta dos chineses. No século III d.C., Liu Hui, um copiador de livros, conseguiu obter o valor 3,14159 com um polígono de 3 072 lados.

Mas no fim do século V, o matemático Tsu Ch'ung-chih foi mais longe ainda: encontrou como valor de pi um número entre 3,1415926 e 3,1415927.

Nesta época, o grande matemático hindu Aryabhata deixou registrada esta afirmação num pequeno livro escrito em versos:

"Some-se 4 a 100, multiplique-se por 8 e some-se 62 000. O resultado é aproximadamente uma circunferência de diâmetro 20 000".

Se você recordar que o comprimento de uma circunferência é dado por c = pi . d, fica fácil entender que a solução da equação de Aryabhata:

(4 + 100) . 8 + 62 000 = pi . 20 000

104 . 8 + 62 000 = pi . 20 000

832 + 62 000 = pi . 20 000

62 832 = pi . 20 000

62 832/20 000 = pi

indica

...

Baixar como (para membros premium)  txt (4.3 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com