TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Convergência

Tese: Convergência. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  9/4/2014  •  Tese  •  708 Palavras (3 Páginas)  •  258 Visualizações

Página 1 de 3

foi definida pela primeira vez pelo matemático suíço Leonhard Euler no artigo De Progressionibus harmonicus observationes, publicado em 1735. Euler usou a notação C para a constante, e inicialmente calculou seu valor até 6 casas decimais. Em 1761 Euler estendeu seus cálculos, publicando um valor com 16 casas decimais. Em 1790 o matemático italiano Lorenzo Mascheroni introduziu a notação γ para a constante, e tentou estender o cálculo de Euler ainda mais, a 32 casas decimais, apesar de cálculos subseqüentes terem mostrado que ele cometera erros na 20°, 22° e 32 casas decimais. (Do 20° dígito, Mascheroni calculou 1811209008239.)

Não se sabe se a constante de Euler-Mascheroni é ou não um número racional. No entanto, análises mostram que se γ for racional, seu denominador tem mais do que 10242080 dígitos (Havil, page 97).

Convergência[editar | editar código-fonte]

Como podemos escrever:

\begin{align} foi definida pela primeira vez pelo matemático suíço Leonhard Euler no artigo De Progressionibus harmonicus observationes, publicado em 1735. Euler usou a notação C para a constante, e inicialmente calculou seu valor até 6 casas decimais. Em 1761 Euler estendeu seus cálculos, publicando um valor com 16 casas decimais. Em 1790 o matemático italiano Lorenzo Mascheroni introduziu a notação γ para a constante, e tentou estender o cálculo de Euler ainda mais, a 32 casas decimais, apesar de cálculos subseqüentes terem mostrado que ele cometera erros na 20°, 22° e 32 casas decimais. (Do 20° dígito, Mascheroni calculou 1811209008239.)

Não se sabe se a constante de Euler-Mascheroni é ou não um número racional. No entanto, análises mostram que se γ for racional, seu denominador tem mais do que 10242080 dígitos (Havil, page 97).

Convergência[editar | editar código-fonte]

Como podemos escrever:

\begin{align}

\ln n &= [\ln n - \ln(n-1)] +[\ln (n-1) - \ln(n-2)]+\ldots +[\ln 2 - \ln 1] + \ln(1) \\

&=\sum_{k=2}^n \,[\ln k - \ln(k-1)]\end{align}\,

Como \ln k - \ln(k-1)=\int_{k-1}^k\frac{dx}{x}\,

\gamma = 1+\sum_{k=2}^{\infty}\left(\frac{1}{k}-\int_{k-1}^k\frac{dx}{x}\right) foi definida pela primeira vez pelo matemático suíço Leonhard Euler no artigo De Progressionibus harmonicus observationes, publicado em 1735. Euler usou a notação C para a constante, e inicialmente calculou seu valor até 6 casas decimais. Em 1761 Euler estendeu seus cálculos, publicando um valor com 16 casas decimais. Em 1790 o matemático italiano Lorenzo Mascheroni introduziu a notação γ para a constante, e tentou estender o cálculo de Euler ainda mais, a 32 casas decimais, apesar de cálculos subseqüentes terem mostrado que ele cometera erros na 20°, 22° e 32 casas decimais. (Do 20° dígito, Mascheroni calculou 1811209008239.)

Não se sabe se a constante de Euler-Mascheroni é ou não um número racional. No entanto, análises mostram que se γ for racional, seu denominador tem mais do que 10242080 dígitos (Havil, page 97).

Convergência[editar | editar código-fonte]

Como podemos escrever:

\begin{align}

...

Baixar como (para membros premium)  txt (4.8 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com