TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

EQUAÇÕES DE VELOCIDADE

Projeto de pesquisa: EQUAÇÕES DE VELOCIDADE. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  26/9/2013  •  Projeto de pesquisa  •  1.130 Palavras (5 Páginas)  •  254 Visualizações

Página 1 de 5

São José dos Campos

Sumário

1. OBJETIVO .................................................................................................pág.2

2. EQUAÇÕES DE VELOCIDADE (Etapa 1)................................................pág.2

3. REGRAS DE DERIVAÇÃO E SUAS APLICAÇÕES (Etapa 2)..................pág.8

4. REGRA DA CADEIA, DERIVADAS (Etapa 3)..........................................pág16

5. APLICAÇÃO DAS DERIVADAS E EXEMPLOS (Passo 4) ....................pág.23

Objetivo:

Iremos abordar neste exercícios os assuntos de derivada e da constante de Euller. Sendo que no calculo, a derivada representa a taxa de variação instantânea de uma função. Um exemplo típico é a função velocidade que representa a taxa de variação (derivada da função espaço). Do mesmo modo é a função aceleração que é a derivada da função velocidade, no desenvolver dos passos esta definição estará mais clara. Outro ponto a ser visto é a constante de Euller. Constituída por Leonhard Euller um grande matemático, que desenvolveu cálculos de grande importância desde a sua época ate dias atuais são utilizados, sendo uma constante matemática que engloba cálculos de nível superior, empregado em cálculos diferenciais e integradas.

Etapa 1 –

Passo 1: Pesquisar e estudar sobre a modelagem de sistemas por meio de equações diferenciais em sistemas físicos e problemas de engenharia.

A modelagem matemática é a área do conhecimento que estuda a simulação de sistemas reais a fim de prever o comportamento dos mesmos, sendo empregada em diversos campos de estudo, como física, química, biologia, economia e engenharia. Modelagem matemática consiste na Arte de se descrever matematicamente um fenômeno.

A modelagem de um fenômeno via equações diferenciais, é normalmente feita da seguinte forma: através da simples observação conseguem-se informações sobre as taxas de variação do fenômeno (que do ponto de vista matemático são derivadas), escreve-se a equação que relaciona as taxas de variação e a função, isto é, a equação diferencial associada e, a partir da solução desta equação tem-se uma possível descrição do fenômeno.

Passo 2: Revisar os conteúdos sobre diferencial de uma função e sobre as técnicas de integração de funções de uma variável. Utilizar como bibliografia o Livro-Texto da disciplina (identificado ao final da ATPS).

A integração é um processo que demanda certa habilidade e técnica, ele provê um meio indispensável para análises de cálculos diversos, além disso, o meio de integrar certas funções deve ser exercitado até que sejamos capazes de absorver a sua essência. O problema da integração deve ser visto como uma análise que pode conduzir a resultados algébricos diversos, quando tomadas técnicas diversas, que concordam, porém, em resultado numérico.

Método de conjecturar e verificar

Uma boa estratégia para se encontrar primitivas simples é fazer uma conjectura de qual deve ser a resposta e depois verificar sua resposta derivando-a. Se obtivermos o resultado esperado, acabou. O método de conjecturar e verificar são útil na inversão da regra da cadeia.

Método por substituição

Quando o integrado e complicado utilizamos essa técnica para formalizar o método de conjeturar e verificar da seguinte maneira

Dw = w´(x) dx = (dw/dx) dx

No método de substituição parece que tratamos dw e dx como entidades separadas, até cancelando-as da equação dw= (dw/dx)dx.

Método Por partes

A técnica de integração por partes consiste da utilização do conceito de diferencial inversa aplicado à fórmula da regra da diferencial do produto, ou seja:

Passo 3: Estudar o método de resolução de equações diferenciais lineares de variáveis separáveis e de primeira ordem. Utilizar como bibliografia o Livro-Texto da disciplina (identificado ao final da ATPS).

Equações diferenciais lineares de variáveis separáveis:

A equação diferencial M(x,y).dx + N(x,y).dy = 0 será de variáveis separáveis se:

- M e N forem funções de apenas uma variável ou constantes.

- M e N forem produtos de fatores de uma só variável.

Isto é, se a equação diferencial puder ser colocada na forma P(x)dx + Q(y)dy = 0, a equação é chamada equação diferencial de variáveis separáveis.

Uma equação diferencial de variável separada é uma equação do tipo:

g(y) dy = f(x)dx

A solução geral da equação diferencial de variável separada obtém-se por primitivação de ambos os membros da equação, ou seja,

...

Baixar como (para membros premium)  txt (7.3 Kb)  
Continuar por mais 4 páginas »
Disponível apenas no TrabalhosGratuitos.com