TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Medidas E Grandezas

Monografias: Medidas E Grandezas. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  26/5/2014  •  1.421 Palavras (6 Páginas)  •  339 Visualizações

Página 1 de 6

Medidas: Determinação e Tratamento de Erros

Laboratório de Física I

SUMÁRIO

RESUMO...............................................................................................................1

OBJETIVOS.....................................................................................................2

FUNDAMENTOS TEÓRICOS.........................................................................2

MATERIAIS UTILIZADOS................................................................................4

PROCEDIMENTO EXPERIMENTAL................................................... ............4

APRESENTAÇÃO DOS RESULTADOS..........................................................5

CONCLUSÕES.................................................................................................9

BIBLIOGRAFIA.................................................................................................9

ANEXOS:

APÊNDICE A ........................................................................................................10

APÊNDICE B.........................................................................................................22

APÊNDICE C.........................................................................................................25

Resumo

Comparamos a precisão de medidas feitas de materiais (paralelepípedo e cilindro) com geometria relativamente bem definida, calculando seus volumes e densidades de forma indireta, usando equações de geometria espacial e físicas, regras de propagação de erros e algarismos significativos. De posse dos resultados, concluímos que o paquímetro é um instrumento mais preciso que a régua e chegamos a comparar as densidades dos sólidos com valores já tabelados.

Objetivos

Analisar a precisão de medidas de uma mesma grandeza usando diferentes instrumentos e entender os diferentes tipos de erros ou incertezas relativos aos processos experimentais, erro de leitura (inerente ao instrumento) e o erro devido à própria amostra em questão (imperfeições).

Representar de forma correta uma grandeza física usando regras de propagação de incertezas e algarismos significativos.

Fundamentos teóricos

Uma grandeza física é tudo aquilo que pode ser medido de forma quantitativa, assim ao medirmos estamos comparando quantas vezes determinado valor contém uma unidade definida previamente como padrão, por exemplo, a definição atual do metro é a distancia percorrida pela luz no vácuo durante um intervalo de tempo de 1/299.792.458 de segundo, tempo esse ajustado para que sua velocidade seja exatamente “c”. O quilograma é definido como a massa de um cilindro de platina-irídio (Quilograma-Padrão) mantido no Bureau Internacional de Pesos e Medidas, em Paris, ao qual foi atribuído, através de um acordo, o valor de um quilograma para sua massa (1).

Assim, como nos exemplos anteriores várias outras grandezas físicas fundamentais também exigem uma definição muito precisa de forma que a mesma seja invariante em todo o mundo.

Portando ao representar uma grandeza escalar necessitamos fornecer três itens:

Um número.

Unidade.

Incerteza associada a ela (confiabilidade), portanto válida dentro de um intervalo.

Inexistindo medidas perfeitas e instrumentos perfeitos, deve-se necessariamente atribuir uma incerteza a toda e qualquer medida física sendo que a forma correta de sua representação é a seguinte:

(1.0)

Onde:

¯X: Valor mais provável da medida, ou a média aritmética de uma série de medidas feitas. Portanto em notação matemática:

(1.1)

Sendo X_i o valor das medidas.

∆X=∆X_sr+∆X_est

∆X_sr: Associado à calibração do instrumento em questão, definido como a metade do valor da menor escala do instrumento utilizado, portando utilizamos 0,5mm para a régua e 0,02mm para o paquímetro.

∆X_est: Erroestatístico, calculado da seguinte maneira:

(1.2)

A densidade de um corpo é, por definição, massa por unidade de volume, portanto nos da uma idéia da quantidade de matéria presente no material. Matematicamente temos:

(1.3)

A densidade e seu respectivo erro podem ser calculados da seguinte maneira:

ρ=X/Y±1/Y^2 [(X*ΔY)+(Y*ΔX) ]

Onde:

ρ: É a densidade, dada no Sistema Internacional (SI) em Kg⁄m^3 .

M: É a massa do corpo, no SI em Kg.

V: É o volume, no SI em m^3.

Δy : Incerteza associada a massa

ΔX : Incerteza associada ao volume

Materiais utilizados

Foram utilizados cilindros e paralelepípedos metálicos, réguas transparentes, paquímetros e balanças de precisão.

As incertezas utilizadas nos cálculos, associada ao instrumento (∆X_sr) foram:

0,5mm para a régua

0,02mm para o paquímetro

0,05g para

...

Baixar como (para membros premium)  txt (16.4 Kb)  
Continuar por mais 5 páginas »
Disponível apenas no TrabalhosGratuitos.com